L∞ Ill-Posedness for a Class of Equations Arising in Hydrodynamics

We give a new approach to studying norm inflation (in some critical spaces) for a wide class of equations arising in hydrodynamics. As an application, we prove strong ill-posedness of the n -dimensional Euler equations in the class C 1 ∩ L 2 ( Ω ) and also in C k ∩ L 2 ( Ω ) where Ω can be the whole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2020-03, Vol.235 (3), p.1979-2025
Hauptverfasser: Elgindi, Tarek M., Masmoudi, Nader
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a new approach to studying norm inflation (in some critical spaces) for a wide class of equations arising in hydrodynamics. As an application, we prove strong ill-posedness of the n -dimensional Euler equations in the class C 1 ∩ L 2 ( Ω ) and also in C k ∩ L 2 ( Ω ) where Ω can be the whole space, a smooth bounded domain, or the torus. We also apply our method to the Oldroyd B, surface quasi-geostrophic, and Boussinesq systems.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-019-01457-7