L∞ Ill-Posedness for a Class of Equations Arising in Hydrodynamics
We give a new approach to studying norm inflation (in some critical spaces) for a wide class of equations arising in hydrodynamics. As an application, we prove strong ill-posedness of the n -dimensional Euler equations in the class C 1 ∩ L 2 ( Ω ) and also in C k ∩ L 2 ( Ω ) where Ω can be the whole...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2020-03, Vol.235 (3), p.1979-2025 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a new approach to studying norm inflation (in some critical spaces) for a wide class of equations arising in hydrodynamics. As an application, we prove strong ill-posedness of the
n
-dimensional Euler equations in the class
C
1
∩
L
2
(
Ω
)
and also in
C
k
∩
L
2
(
Ω
)
where
Ω
can be the whole space, a smooth bounded domain, or the torus. We also apply our method to the Oldroyd B, surface quasi-geostrophic, and Boussinesq systems. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-019-01457-7 |