A partial converse to the Andreotti–Grauert theorem
Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$ . We show that if a line bundle $L$ is $(n-1)$ -ample, then it is $(n-1)$ -positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2019-01, Vol.155 (1), p.89-99 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$X$
be a smooth projective manifold with
$\dim _{\mathbb{C}}X=n$
. We show that if a line bundle
$L$
is
$(n-1)$
-ample, then it is
$(n-1)$
-positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold
$X$
is uniruled if and only if there exists a Hermitian metric
$\unicode[STIX]{x1D714}$
on
$X$
such that its Ricci curvature
$\text{Ric}(\unicode[STIX]{x1D714})$
has at least one positive eigenvalue everywhere. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X18007509 |