A partial converse to the Andreotti–Grauert theorem

Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$ . We show that if a line bundle $L$ is $(n-1)$ -ample, then it is $(n-1)$ -positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2019-01, Vol.155 (1), p.89-99
1. Verfasser: Yang, Xiaokui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $X$ be a smooth projective manifold with $\dim _{\mathbb{C}}X=n$ . We show that if a line bundle $L$ is $(n-1)$ -ample, then it is $(n-1)$ -positive. This is a partial converse to the Andreotti–Grauert theorem. As an application, we show that a projective manifold $X$ is uniruled if and only if there exists a Hermitian metric $\unicode[STIX]{x1D714}$ on $X$ such that its Ricci curvature $\text{Ric}(\unicode[STIX]{x1D714})$ has at least one positive eigenvalue everywhere.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X18007509