A new proof of Halász’s theorem, and its consequences

Halász’s theorem gives an upper bound for the mean value of a multiplicative function $f$ . The bound is sharp for general such $f$ , and, in particular, it implies that a multiplicative function with $|f(n)|\leqslant 1$ has either mean value $0$ , or is ‘close to’ $n^{it}$ for some fixed $t$ . The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2019-01, Vol.155 (1), p.126-163, Article 126
Hauptverfasser: Granville, Andrew, Harper, Adam J., Soundararajan, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Halász’s theorem gives an upper bound for the mean value of a multiplicative function $f$ . The bound is sharp for general such $f$ , and, in particular, it implies that a multiplicative function with $|f(n)|\leqslant 1$ has either mean value $0$ , or is ‘close to’ $n^{it}$ for some fixed $t$ . The proofs in the current literature have certain features that are difficult to motivate and which are not particularly flexible. In this article we supply a different, more flexible, proof, which indicates how one might obtain asymptotics, and can be modified to treat short intervals and arithmetic progressions. We use these results to obtain new, arguably simpler, proofs that there are always primes in short intervals (Hoheisel’s theorem), and that there are always primes near to the start of an arithmetic progression (Linnik’s theorem).
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X18007522