Critical point equation on N(k)-contact manifolds

The object of the present paper is to characterize N(k)-contact metric manifolds satisfying the *-critical point equation. It is proved that, if (g, λ) is a non-constant solution of the *-critical point equation of a non-compact N(k)-contact metric manifold, then (1) the manifold M is locally isomet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Transilvania University of Braşov: Series III Mathematics & Computer Science 2020-01, Vol.12 (2), p.275-282
Hauptverfasser: Dey, D., Majhi, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The object of the present paper is to characterize N(k)-contact metric manifolds satisfying the *-critical point equation. It is proved that, if (g, λ) is a non-constant solution of the *-critical point equation of a non-compact N(k)-contact metric manifold, then (1) the manifold M is locally isometric to the Riemannian product of a at (n + 1)-dimensional manifold and an n-dimensional manifold of positive curvature 4 for n > 1 and at for n = 1, (2) the manifold is *-Ricci at and (3) the function λ is harmonic. The result is also verified by an example.
ISSN:2810-2029
2065-2151
DOI:10.31926/but.mif.2019.12.61.2.7