Critical point equation on N(k)-contact manifolds
The object of the present paper is to characterize N(k)-contact metric manifolds satisfying the *-critical point equation. It is proved that, if (g, λ) is a non-constant solution of the *-critical point equation of a non-compact N(k)-contact metric manifold, then (1) the manifold M is locally isomet...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Transilvania University of Braşov: Series III Mathematics & Computer Science 2020-01, Vol.12 (2), p.275-282 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The object of the present paper is to characterize N(k)-contact metric manifolds satisfying the *-critical point equation. It is proved that, if (g, λ) is a non-constant solution of the *-critical point equation of a non-compact N(k)-contact metric manifold, then (1) the manifold M is locally isometric to the Riemannian product of a at (n + 1)-dimensional manifold and an n-dimensional manifold of positive curvature 4 for n > 1 and at for n = 1, (2) the manifold is *-Ricci at and (3) the function λ is harmonic. The result is also verified by an example. |
---|---|
ISSN: | 2810-2029 2065-2151 |
DOI: | 10.31926/but.mif.2019.12.61.2.7 |