Crystal lattice disorder and characteristic features of the low-temperature thermal properties of higher borides

Heat capacity C P ( T ) and lattice parameters a ( T ), b ( T ) and c ( T ) of LuB 44 Si 3.5 borosilicide are experimentally studied as a function of temperature in the range of 2-300 K. The results are compared with those of pseudo-isostructural LuB 50 boride. At the lowest temperatures, it is show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2020-02, Vol.49 (7), p.2138-2144
Hauptverfasser: Novikov, V. V, Matovnikov, A. V, Mitroshenkov, N. V, Shevelkov, A. V, Bud'ko, S. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heat capacity C P ( T ) and lattice parameters a ( T ), b ( T ) and c ( T ) of LuB 44 Si 3.5 borosilicide are experimentally studied as a function of temperature in the range of 2-300 K. The results are compared with those of pseudo-isostructural LuB 50 boride. At the lowest temperatures, it is shown that the C P ( T ) dependence of borosilicide changes linearly with temperature. This is attributed to the effect of glass-like behaviour of the heat capacity due to the disorder in the sublattice of non-metals. The presence of defects in the B-Si sublattice and the irregular form of the cages in the B-Si matrix, which are occupied by Lu 3+ ions, lead to the formation of two-level systems (TLS) in the Lu 3+ subsystem. The TLS make a characteristic bell-like low-temperature contribution to the heat capacity of borosilicide. We show that there is a wide temperature range (5-150 K) of negative thermal expansion of borosilicide, which is attributed to the influence of quasi-independent vibrations of Lu 3+ ions in the cages of the borosilicide crystal structure. Heat capacity C P ( T ) and lattice parameters a ( T ), b ( T ) and c ( T ) of LuB 44 Si 3.5 borosilicide are experimentally studied as a function of temperature in the range of 2-300 K.
ISSN:1477-9226
1477-9234
DOI:10.1039/c9dt04919c