Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon
Key message CYP81A P450s armor Echinochloa phyllopogon against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in E. phyllopogon and other related species. Metabolism-based herbicide resistance is a major threat to...
Gespeichert in:
Veröffentlicht in: | Plant molecular biology 2020-03, Vol.102 (4-5), p.403-416 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | 4-5 |
container_start_page | 403 |
container_title | Plant molecular biology |
container_volume | 102 |
creator | Dimaano, Niña Gracel Yamaguchi, Takuya Fukunishi, Kanade Tominaga, Tohru Iwakami, Satoshi |
description | Key message
CYP81A P450s armor
Echinochloa phyllopogon
against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in
E. phyllopogon
and other related species.
Metabolism-based herbicide resistance is a major threat to agriculture, as it is unpredictable and could extend resistance to different chemical groups and modes of action, encompassing existing, novel and to-be-discovered herbicides. Limited information on the enzymes involved in herbicide metabolism has hindered the prediction of cross-resistance in weeds. Members of CYP81A subfamily in multiple herbicide resistant (MHR)
Echinochloa phyllopogon
were previously identified for conferring cross-resistance to six unrelated herbicide classes. This suggests a critical role of CYP81As in endowing unpredictable cross-resistances in
E. phyllopogon
, thus the functions of all its nine putative functional
CYP81A
genes to 33 herbicides from 24 chemical groups were characterized. Ectopic expression in
Arabidopsis thaliana
identified the CYP81As that can confer resistance to multiple and diverse herbicides. The CYP81As were further characterized for their enzymatic functions in
Escherichia coli.
CYP81A expression in
E. coli
was optimized via modification of the N-terminus, co-expression with
HemA
gene and culture at optimal temperature. CYP81As metabolized its herbicide substrates into hydroxylated,
N
-/
O
-demethylated or both products. The cross-resistance pattern conferred by CYP81As is geared towards all chemical groups of acetolactate synthase inhibitors and is expanded to herbicides inhibiting photosystem II, phytoene desaturase, protoporphyrinogen oxidase, 4-hydroxyphenylpyruvate dioxygenase, and 1-deoxy-
d
-xylulose 5-phosphate synthase. Cross-resistance to herbicides pyrimisulfan, propyrisulfuron, and mesotrione was predicted and confirmed in MHR
E. phyllopogon
. This study demonstrated that the functional characterization of the key enzymes for herbicide metabolism could disclose the cross-resistance pattern and identify appropriate chemical options to manage the existing and unexpected cross-resistances in
E. phyllopogon. |
doi_str_mv | 10.1007/s11103-019-00954-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2356409011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356409011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-99ecd0215bce666217d589d66c172ac1c950e523923b133b7986c6520f547dd73</originalsourceid><addsrcrecordid>eNp9kLFu1TAYha0K1F7avgADssRs-H87tuOxumoBqRIdYGCKHMdpUuXGwXaG2wfguXGbAhuTJfuczzofIW8RPiCA_pgQEQQDNAzAyIqJE7JDqQWTwOtXZAeoNKsq5GfkTUoPAKUm1Ck5E1ibGiu9I79u1tnlMcx2om6w0brs4_hon65o6Kk75uCGGA6e3lUS6P7HXY1XNK1tbw_jdKQ50G5MbgrJ0zx4uthcCFs3hpRY9GlM2c7O03Gm124Y50KcgqXLcJymsIT7MF-Q172dkr98Oc_J95vrb_vP7Pbrpy_7q1vmyozMjPGuA46ydV4pxVF3sjadUg41tw6dkeAlF4aLFoVotamVU5JDLyvddVqck_cbd4nh5-pTbh7CGsv41HAhVQUGEEuKb6nnBdH3zRLHg43HBqF5Ut9s6puivnlW34hSeveCXtuD7_5W_rguAbEFUnma73389_d_sL8BsROPXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2356409011</pqid></control><display><type>article</type><title>Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Dimaano, Niña Gracel ; Yamaguchi, Takuya ; Fukunishi, Kanade ; Tominaga, Tohru ; Iwakami, Satoshi</creator><creatorcontrib>Dimaano, Niña Gracel ; Yamaguchi, Takuya ; Fukunishi, Kanade ; Tominaga, Tohru ; Iwakami, Satoshi</creatorcontrib><description>Key message
CYP81A P450s armor
Echinochloa phyllopogon
against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in
E. phyllopogon
and other related species.
Metabolism-based herbicide resistance is a major threat to agriculture, as it is unpredictable and could extend resistance to different chemical groups and modes of action, encompassing existing, novel and to-be-discovered herbicides. Limited information on the enzymes involved in herbicide metabolism has hindered the prediction of cross-resistance in weeds. Members of CYP81A subfamily in multiple herbicide resistant (MHR)
Echinochloa phyllopogon
were previously identified for conferring cross-resistance to six unrelated herbicide classes. This suggests a critical role of CYP81As in endowing unpredictable cross-resistances in
E. phyllopogon
, thus the functions of all its nine putative functional
CYP81A
genes to 33 herbicides from 24 chemical groups were characterized. Ectopic expression in
Arabidopsis thaliana
identified the CYP81As that can confer resistance to multiple and diverse herbicides. The CYP81As were further characterized for their enzymatic functions in
Escherichia coli.
CYP81A expression in
E. coli
was optimized via modification of the N-terminus, co-expression with
HemA
gene and culture at optimal temperature. CYP81As metabolized its herbicide substrates into hydroxylated,
N
-/
O
-demethylated or both products. The cross-resistance pattern conferred by CYP81As is geared towards all chemical groups of acetolactate synthase inhibitors and is expanded to herbicides inhibiting photosystem II, phytoene desaturase, protoporphyrinogen oxidase, 4-hydroxyphenylpyruvate dioxygenase, and 1-deoxy-
d
-xylulose 5-phosphate synthase. Cross-resistance to herbicides pyrimisulfan, propyrisulfuron, and mesotrione was predicted and confirmed in MHR
E. phyllopogon
. This study demonstrated that the functional characterization of the key enzymes for herbicide metabolism could disclose the cross-resistance pattern and identify appropriate chemical options to manage the existing and unexpected cross-resistances in
E. phyllopogon.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-019-00954-3</identifier><identifier>PMID: 31898147</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>4-Hydroxyphenylpyruvate dioxygenase ; Acetolactate synthase ; Acetolactate Synthase - metabolism ; Arabidopsis - drug effects ; Arabidopsis - enzymology ; Biochemistry ; Biomedical and Life Sciences ; Chromatography, Liquid ; Cross-resistance ; Cytochrome P-450 Enzyme System - metabolism ; Cytochrome P450 ; D-Xylulose 5-phosphate ; Desaturase ; E coli ; Echinochloa - drug effects ; Echinochloa - enzymology ; Echinochloa phyllopogon ; Ectopic expression ; Enzymes ; Escherichia coli ; Gene Expression Regulation, Plant ; HemA gene ; Herbicide resistance ; Herbicide Resistance - genetics ; Herbicides ; Herbicides - pharmacology ; Life Sciences ; Metabolism ; N-Terminus ; Photosystem II ; Plant Pathology ; Plant Sciences ; Plants, Genetically Modified - drug effects ; Protoporphyrinogen oxidase ; Seeds ; Substrate preferences ; Substrate Specificity ; Sulfonylurea Compounds - pharmacology ; Tandem Mass Spectrometry ; Temperature ; Xylulose</subject><ispartof>Plant molecular biology, 2020-03, Vol.102 (4-5), p.403-416</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Plant Molecular Biology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-99ecd0215bce666217d589d66c172ac1c950e523923b133b7986c6520f547dd73</citedby><cites>FETCH-LOGICAL-c441t-99ecd0215bce666217d589d66c172ac1c950e523923b133b7986c6520f547dd73</cites><orcidid>0000-0002-6231-0851 ; 0000-0002-7793-7163 ; 0000-0002-7533-430X ; 0000-0003-4012-9899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11103-019-00954-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11103-019-00954-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31898147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimaano, Niña Gracel</creatorcontrib><creatorcontrib>Yamaguchi, Takuya</creatorcontrib><creatorcontrib>Fukunishi, Kanade</creatorcontrib><creatorcontrib>Tominaga, Tohru</creatorcontrib><creatorcontrib>Iwakami, Satoshi</creatorcontrib><title>Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Key message
CYP81A P450s armor
Echinochloa phyllopogon
against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in
E. phyllopogon
and other related species.
Metabolism-based herbicide resistance is a major threat to agriculture, as it is unpredictable and could extend resistance to different chemical groups and modes of action, encompassing existing, novel and to-be-discovered herbicides. Limited information on the enzymes involved in herbicide metabolism has hindered the prediction of cross-resistance in weeds. Members of CYP81A subfamily in multiple herbicide resistant (MHR)
Echinochloa phyllopogon
were previously identified for conferring cross-resistance to six unrelated herbicide classes. This suggests a critical role of CYP81As in endowing unpredictable cross-resistances in
E. phyllopogon
, thus the functions of all its nine putative functional
CYP81A
genes to 33 herbicides from 24 chemical groups were characterized. Ectopic expression in
Arabidopsis thaliana
identified the CYP81As that can confer resistance to multiple and diverse herbicides. The CYP81As were further characterized for their enzymatic functions in
Escherichia coli.
CYP81A expression in
E. coli
was optimized via modification of the N-terminus, co-expression with
HemA
gene and culture at optimal temperature. CYP81As metabolized its herbicide substrates into hydroxylated,
N
-/
O
-demethylated or both products. The cross-resistance pattern conferred by CYP81As is geared towards all chemical groups of acetolactate synthase inhibitors and is expanded to herbicides inhibiting photosystem II, phytoene desaturase, protoporphyrinogen oxidase, 4-hydroxyphenylpyruvate dioxygenase, and 1-deoxy-
d
-xylulose 5-phosphate synthase. Cross-resistance to herbicides pyrimisulfan, propyrisulfuron, and mesotrione was predicted and confirmed in MHR
E. phyllopogon
. This study demonstrated that the functional characterization of the key enzymes for herbicide metabolism could disclose the cross-resistance pattern and identify appropriate chemical options to manage the existing and unexpected cross-resistances in
E. phyllopogon.</description><subject>4-Hydroxyphenylpyruvate dioxygenase</subject><subject>Acetolactate synthase</subject><subject>Acetolactate Synthase - metabolism</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - enzymology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Chromatography, Liquid</subject><subject>Cross-resistance</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochrome P450</subject><subject>D-Xylulose 5-phosphate</subject><subject>Desaturase</subject><subject>E coli</subject><subject>Echinochloa - drug effects</subject><subject>Echinochloa - enzymology</subject><subject>Echinochloa phyllopogon</subject><subject>Ectopic expression</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Gene Expression Regulation, Plant</subject><subject>HemA gene</subject><subject>Herbicide resistance</subject><subject>Herbicide Resistance - genetics</subject><subject>Herbicides</subject><subject>Herbicides - pharmacology</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>N-Terminus</subject><subject>Photosystem II</subject><subject>Plant Pathology</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified - drug effects</subject><subject>Protoporphyrinogen oxidase</subject><subject>Seeds</subject><subject>Substrate preferences</subject><subject>Substrate Specificity</subject><subject>Sulfonylurea Compounds - pharmacology</subject><subject>Tandem Mass Spectrometry</subject><subject>Temperature</subject><subject>Xylulose</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLFu1TAYha0K1F7avgADssRs-H87tuOxumoBqRIdYGCKHMdpUuXGwXaG2wfguXGbAhuTJfuczzofIW8RPiCA_pgQEQQDNAzAyIqJE7JDqQWTwOtXZAeoNKsq5GfkTUoPAKUm1Ck5E1ibGiu9I79u1tnlMcx2om6w0brs4_hon65o6Kk75uCGGA6e3lUS6P7HXY1XNK1tbw_jdKQ50G5MbgrJ0zx4uthcCFs3hpRY9GlM2c7O03Gm124Y50KcgqXLcJymsIT7MF-Q172dkr98Oc_J95vrb_vP7Pbrpy_7q1vmyozMjPGuA46ydV4pxVF3sjadUg41tw6dkeAlF4aLFoVotamVU5JDLyvddVqck_cbd4nh5-pTbh7CGsv41HAhVQUGEEuKb6nnBdH3zRLHg43HBqF5Ut9s6puivnlW34hSeveCXtuD7_5W_rguAbEFUnma73389_d_sL8BsROPXw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Dimaano, Niña Gracel</creator><creator>Yamaguchi, Takuya</creator><creator>Fukunishi, Kanade</creator><creator>Tominaga, Tohru</creator><creator>Iwakami, Satoshi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-6231-0851</orcidid><orcidid>https://orcid.org/0000-0002-7793-7163</orcidid><orcidid>https://orcid.org/0000-0002-7533-430X</orcidid><orcidid>https://orcid.org/0000-0003-4012-9899</orcidid></search><sort><creationdate>20200301</creationdate><title>Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon</title><author>Dimaano, Niña Gracel ; Yamaguchi, Takuya ; Fukunishi, Kanade ; Tominaga, Tohru ; Iwakami, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-99ecd0215bce666217d589d66c172ac1c950e523923b133b7986c6520f547dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>4-Hydroxyphenylpyruvate dioxygenase</topic><topic>Acetolactate synthase</topic><topic>Acetolactate Synthase - metabolism</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - enzymology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Chromatography, Liquid</topic><topic>Cross-resistance</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochrome P450</topic><topic>D-Xylulose 5-phosphate</topic><topic>Desaturase</topic><topic>E coli</topic><topic>Echinochloa - drug effects</topic><topic>Echinochloa - enzymology</topic><topic>Echinochloa phyllopogon</topic><topic>Ectopic expression</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Gene Expression Regulation, Plant</topic><topic>HemA gene</topic><topic>Herbicide resistance</topic><topic>Herbicide Resistance - genetics</topic><topic>Herbicides</topic><topic>Herbicides - pharmacology</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>N-Terminus</topic><topic>Photosystem II</topic><topic>Plant Pathology</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified - drug effects</topic><topic>Protoporphyrinogen oxidase</topic><topic>Seeds</topic><topic>Substrate preferences</topic><topic>Substrate Specificity</topic><topic>Sulfonylurea Compounds - pharmacology</topic><topic>Tandem Mass Spectrometry</topic><topic>Temperature</topic><topic>Xylulose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimaano, Niña Gracel</creatorcontrib><creatorcontrib>Yamaguchi, Takuya</creatorcontrib><creatorcontrib>Fukunishi, Kanade</creatorcontrib><creatorcontrib>Tominaga, Tohru</creatorcontrib><creatorcontrib>Iwakami, Satoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimaano, Niña Gracel</au><au>Yamaguchi, Takuya</au><au>Fukunishi, Kanade</au><au>Tominaga, Tohru</au><au>Iwakami, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>102</volume><issue>4-5</issue><spage>403</spage><epage>416</epage><pages>403-416</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Key message
CYP81A P450s armor
Echinochloa phyllopogon
against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in
E. phyllopogon
and other related species.
Metabolism-based herbicide resistance is a major threat to agriculture, as it is unpredictable and could extend resistance to different chemical groups and modes of action, encompassing existing, novel and to-be-discovered herbicides. Limited information on the enzymes involved in herbicide metabolism has hindered the prediction of cross-resistance in weeds. Members of CYP81A subfamily in multiple herbicide resistant (MHR)
Echinochloa phyllopogon
were previously identified for conferring cross-resistance to six unrelated herbicide classes. This suggests a critical role of CYP81As in endowing unpredictable cross-resistances in
E. phyllopogon
, thus the functions of all its nine putative functional
CYP81A
genes to 33 herbicides from 24 chemical groups were characterized. Ectopic expression in
Arabidopsis thaliana
identified the CYP81As that can confer resistance to multiple and diverse herbicides. The CYP81As were further characterized for their enzymatic functions in
Escherichia coli.
CYP81A expression in
E. coli
was optimized via modification of the N-terminus, co-expression with
HemA
gene and culture at optimal temperature. CYP81As metabolized its herbicide substrates into hydroxylated,
N
-/
O
-demethylated or both products. The cross-resistance pattern conferred by CYP81As is geared towards all chemical groups of acetolactate synthase inhibitors and is expanded to herbicides inhibiting photosystem II, phytoene desaturase, protoporphyrinogen oxidase, 4-hydroxyphenylpyruvate dioxygenase, and 1-deoxy-
d
-xylulose 5-phosphate synthase. Cross-resistance to herbicides pyrimisulfan, propyrisulfuron, and mesotrione was predicted and confirmed in MHR
E. phyllopogon
. This study demonstrated that the functional characterization of the key enzymes for herbicide metabolism could disclose the cross-resistance pattern and identify appropriate chemical options to manage the existing and unexpected cross-resistances in
E. phyllopogon.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>31898147</pmid><doi>10.1007/s11103-019-00954-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6231-0851</orcidid><orcidid>https://orcid.org/0000-0002-7793-7163</orcidid><orcidid>https://orcid.org/0000-0002-7533-430X</orcidid><orcidid>https://orcid.org/0000-0003-4012-9899</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4412 |
ispartof | Plant molecular biology, 2020-03, Vol.102 (4-5), p.403-416 |
issn | 0167-4412 1573-5028 |
language | eng |
recordid | cdi_proquest_journals_2356409011 |
source | MEDLINE; SpringerLink Journals |
subjects | 4-Hydroxyphenylpyruvate dioxygenase Acetolactate synthase Acetolactate Synthase - metabolism Arabidopsis - drug effects Arabidopsis - enzymology Biochemistry Biomedical and Life Sciences Chromatography, Liquid Cross-resistance Cytochrome P-450 Enzyme System - metabolism Cytochrome P450 D-Xylulose 5-phosphate Desaturase E coli Echinochloa - drug effects Echinochloa - enzymology Echinochloa phyllopogon Ectopic expression Enzymes Escherichia coli Gene Expression Regulation, Plant HemA gene Herbicide resistance Herbicide Resistance - genetics Herbicides Herbicides - pharmacology Life Sciences Metabolism N-Terminus Photosystem II Plant Pathology Plant Sciences Plants, Genetically Modified - drug effects Protoporphyrinogen oxidase Seeds Substrate preferences Substrate Specificity Sulfonylurea Compounds - pharmacology Tandem Mass Spectrometry Temperature Xylulose |
title | Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20characterization%20of%20cytochrome%20P450%20CYP81A%20subfamily%20to%20disclose%20the%20pattern%20of%20cross-resistance%20in%20Echinochloa%20phyllopogon&rft.jtitle=Plant%20molecular%20biology&rft.au=Dimaano,%20Ni%C3%B1a%20Gracel&rft.date=2020-03-01&rft.volume=102&rft.issue=4-5&rft.spage=403&rft.epage=416&rft.pages=403-416&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-019-00954-3&rft_dat=%3Cproquest_cross%3E2356409011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2356409011&rft_id=info:pmid/31898147&rfr_iscdi=true |