Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon

Key message CYP81A P450s armor Echinochloa phyllopogon against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in E. phyllopogon and other related species. Metabolism-based herbicide resistance is a major threat to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 2020-03, Vol.102 (4-5), p.403-416
Hauptverfasser: Dimaano, Niña Gracel, Yamaguchi, Takuya, Fukunishi, Kanade, Tominaga, Tohru, Iwakami, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 4-5
container_start_page 403
container_title Plant molecular biology
container_volume 102
creator Dimaano, Niña Gracel
Yamaguchi, Takuya
Fukunishi, Kanade
Tominaga, Tohru
Iwakami, Satoshi
description Key message CYP81A P450s armor Echinochloa phyllopogon against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in E. phyllopogon and other related species. Metabolism-based herbicide resistance is a major threat to agriculture, as it is unpredictable and could extend resistance to different chemical groups and modes of action, encompassing existing, novel and to-be-discovered herbicides. Limited information on the enzymes involved in herbicide metabolism has hindered the prediction of cross-resistance in weeds. Members of CYP81A subfamily in multiple herbicide resistant (MHR) Echinochloa phyllopogon were previously identified for conferring cross-resistance to six unrelated herbicide classes. This suggests a critical role of CYP81As in endowing unpredictable cross-resistances in E. phyllopogon , thus the functions of all its nine putative functional CYP81A genes to 33 herbicides from 24 chemical groups were characterized. Ectopic expression in Arabidopsis thaliana identified the CYP81As that can confer resistance to multiple and diverse herbicides. The CYP81As were further characterized for their enzymatic functions in Escherichia coli. CYP81A expression in E. coli was optimized via modification of the N-terminus, co-expression with HemA gene and culture at optimal temperature. CYP81As metabolized its herbicide substrates into hydroxylated, N -/ O -demethylated or both products. The cross-resistance pattern conferred by CYP81As is geared towards all chemical groups of acetolactate synthase inhibitors and is expanded to herbicides inhibiting photosystem II, phytoene desaturase, protoporphyrinogen oxidase, 4-hydroxyphenylpyruvate dioxygenase, and 1-deoxy- d -xylulose 5-phosphate synthase. Cross-resistance to herbicides pyrimisulfan, propyrisulfuron, and mesotrione was predicted and confirmed in MHR E. phyllopogon . This study demonstrated that the functional characterization of the key enzymes for herbicide metabolism could disclose the cross-resistance pattern and identify appropriate chemical options to manage the existing and unexpected cross-resistances in E. phyllopogon.
doi_str_mv 10.1007/s11103-019-00954-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2356409011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356409011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-99ecd0215bce666217d589d66c172ac1c950e523923b133b7986c6520f547dd73</originalsourceid><addsrcrecordid>eNp9kLFu1TAYha0K1F7avgADssRs-H87tuOxumoBqRIdYGCKHMdpUuXGwXaG2wfguXGbAhuTJfuczzofIW8RPiCA_pgQEQQDNAzAyIqJE7JDqQWTwOtXZAeoNKsq5GfkTUoPAKUm1Ck5E1ibGiu9I79u1tnlMcx2om6w0brs4_hon65o6Kk75uCGGA6e3lUS6P7HXY1XNK1tbw_jdKQ50G5MbgrJ0zx4uthcCFs3hpRY9GlM2c7O03Gm124Y50KcgqXLcJymsIT7MF-Q172dkr98Oc_J95vrb_vP7Pbrpy_7q1vmyozMjPGuA46ydV4pxVF3sjadUg41tw6dkeAlF4aLFoVotamVU5JDLyvddVqck_cbd4nh5-pTbh7CGsv41HAhVQUGEEuKb6nnBdH3zRLHg43HBqF5Ut9s6puivnlW34hSeveCXtuD7_5W_rguAbEFUnma73389_d_sL8BsROPXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2356409011</pqid></control><display><type>article</type><title>Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Dimaano, Niña Gracel ; Yamaguchi, Takuya ; Fukunishi, Kanade ; Tominaga, Tohru ; Iwakami, Satoshi</creator><creatorcontrib>Dimaano, Niña Gracel ; Yamaguchi, Takuya ; Fukunishi, Kanade ; Tominaga, Tohru ; Iwakami, Satoshi</creatorcontrib><description>Key message CYP81A P450s armor Echinochloa phyllopogon against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in E. phyllopogon and other related species. Metabolism-based herbicide resistance is a major threat to agriculture, as it is unpredictable and could extend resistance to different chemical groups and modes of action, encompassing existing, novel and to-be-discovered herbicides. Limited information on the enzymes involved in herbicide metabolism has hindered the prediction of cross-resistance in weeds. Members of CYP81A subfamily in multiple herbicide resistant (MHR) Echinochloa phyllopogon were previously identified for conferring cross-resistance to six unrelated herbicide classes. This suggests a critical role of CYP81As in endowing unpredictable cross-resistances in E. phyllopogon , thus the functions of all its nine putative functional CYP81A genes to 33 herbicides from 24 chemical groups were characterized. Ectopic expression in Arabidopsis thaliana identified the CYP81As that can confer resistance to multiple and diverse herbicides. The CYP81As were further characterized for their enzymatic functions in Escherichia coli. CYP81A expression in E. coli was optimized via modification of the N-terminus, co-expression with HemA gene and culture at optimal temperature. CYP81As metabolized its herbicide substrates into hydroxylated, N -/ O -demethylated or both products. The cross-resistance pattern conferred by CYP81As is geared towards all chemical groups of acetolactate synthase inhibitors and is expanded to herbicides inhibiting photosystem II, phytoene desaturase, protoporphyrinogen oxidase, 4-hydroxyphenylpyruvate dioxygenase, and 1-deoxy- d -xylulose 5-phosphate synthase. Cross-resistance to herbicides pyrimisulfan, propyrisulfuron, and mesotrione was predicted and confirmed in MHR E. phyllopogon . This study demonstrated that the functional characterization of the key enzymes for herbicide metabolism could disclose the cross-resistance pattern and identify appropriate chemical options to manage the existing and unexpected cross-resistances in E. phyllopogon.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-019-00954-3</identifier><identifier>PMID: 31898147</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>4-Hydroxyphenylpyruvate dioxygenase ; Acetolactate synthase ; Acetolactate Synthase - metabolism ; Arabidopsis - drug effects ; Arabidopsis - enzymology ; Biochemistry ; Biomedical and Life Sciences ; Chromatography, Liquid ; Cross-resistance ; Cytochrome P-450 Enzyme System - metabolism ; Cytochrome P450 ; D-Xylulose 5-phosphate ; Desaturase ; E coli ; Echinochloa - drug effects ; Echinochloa - enzymology ; Echinochloa phyllopogon ; Ectopic expression ; Enzymes ; Escherichia coli ; Gene Expression Regulation, Plant ; HemA gene ; Herbicide resistance ; Herbicide Resistance - genetics ; Herbicides ; Herbicides - pharmacology ; Life Sciences ; Metabolism ; N-Terminus ; Photosystem II ; Plant Pathology ; Plant Sciences ; Plants, Genetically Modified - drug effects ; Protoporphyrinogen oxidase ; Seeds ; Substrate preferences ; Substrate Specificity ; Sulfonylurea Compounds - pharmacology ; Tandem Mass Spectrometry ; Temperature ; Xylulose</subject><ispartof>Plant molecular biology, 2020-03, Vol.102 (4-5), p.403-416</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Plant Molecular Biology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-99ecd0215bce666217d589d66c172ac1c950e523923b133b7986c6520f547dd73</citedby><cites>FETCH-LOGICAL-c441t-99ecd0215bce666217d589d66c172ac1c950e523923b133b7986c6520f547dd73</cites><orcidid>0000-0002-6231-0851 ; 0000-0002-7793-7163 ; 0000-0002-7533-430X ; 0000-0003-4012-9899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11103-019-00954-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11103-019-00954-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31898147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dimaano, Niña Gracel</creatorcontrib><creatorcontrib>Yamaguchi, Takuya</creatorcontrib><creatorcontrib>Fukunishi, Kanade</creatorcontrib><creatorcontrib>Tominaga, Tohru</creatorcontrib><creatorcontrib>Iwakami, Satoshi</creatorcontrib><title>Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Key message CYP81A P450s armor Echinochloa phyllopogon against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in E. phyllopogon and other related species. Metabolism-based herbicide resistance is a major threat to agriculture, as it is unpredictable and could extend resistance to different chemical groups and modes of action, encompassing existing, novel and to-be-discovered herbicides. Limited information on the enzymes involved in herbicide metabolism has hindered the prediction of cross-resistance in weeds. Members of CYP81A subfamily in multiple herbicide resistant (MHR) Echinochloa phyllopogon were previously identified for conferring cross-resistance to six unrelated herbicide classes. This suggests a critical role of CYP81As in endowing unpredictable cross-resistances in E. phyllopogon , thus the functions of all its nine putative functional CYP81A genes to 33 herbicides from 24 chemical groups were characterized. Ectopic expression in Arabidopsis thaliana identified the CYP81As that can confer resistance to multiple and diverse herbicides. The CYP81As were further characterized for their enzymatic functions in Escherichia coli. CYP81A expression in E. coli was optimized via modification of the N-terminus, co-expression with HemA gene and culture at optimal temperature. CYP81As metabolized its herbicide substrates into hydroxylated, N -/ O -demethylated or both products. The cross-resistance pattern conferred by CYP81As is geared towards all chemical groups of acetolactate synthase inhibitors and is expanded to herbicides inhibiting photosystem II, phytoene desaturase, protoporphyrinogen oxidase, 4-hydroxyphenylpyruvate dioxygenase, and 1-deoxy- d -xylulose 5-phosphate synthase. Cross-resistance to herbicides pyrimisulfan, propyrisulfuron, and mesotrione was predicted and confirmed in MHR E. phyllopogon . This study demonstrated that the functional characterization of the key enzymes for herbicide metabolism could disclose the cross-resistance pattern and identify appropriate chemical options to manage the existing and unexpected cross-resistances in E. phyllopogon.</description><subject>4-Hydroxyphenylpyruvate dioxygenase</subject><subject>Acetolactate synthase</subject><subject>Acetolactate Synthase - metabolism</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - enzymology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Chromatography, Liquid</subject><subject>Cross-resistance</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Cytochrome P450</subject><subject>D-Xylulose 5-phosphate</subject><subject>Desaturase</subject><subject>E coli</subject><subject>Echinochloa - drug effects</subject><subject>Echinochloa - enzymology</subject><subject>Echinochloa phyllopogon</subject><subject>Ectopic expression</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Gene Expression Regulation, Plant</subject><subject>HemA gene</subject><subject>Herbicide resistance</subject><subject>Herbicide Resistance - genetics</subject><subject>Herbicides</subject><subject>Herbicides - pharmacology</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>N-Terminus</subject><subject>Photosystem II</subject><subject>Plant Pathology</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified - drug effects</subject><subject>Protoporphyrinogen oxidase</subject><subject>Seeds</subject><subject>Substrate preferences</subject><subject>Substrate Specificity</subject><subject>Sulfonylurea Compounds - pharmacology</subject><subject>Tandem Mass Spectrometry</subject><subject>Temperature</subject><subject>Xylulose</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLFu1TAYha0K1F7avgADssRs-H87tuOxumoBqRIdYGCKHMdpUuXGwXaG2wfguXGbAhuTJfuczzofIW8RPiCA_pgQEQQDNAzAyIqJE7JDqQWTwOtXZAeoNKsq5GfkTUoPAKUm1Ck5E1ibGiu9I79u1tnlMcx2om6w0brs4_hon65o6Kk75uCGGA6e3lUS6P7HXY1XNK1tbw_jdKQ50G5MbgrJ0zx4uthcCFs3hpRY9GlM2c7O03Gm124Y50KcgqXLcJymsIT7MF-Q172dkr98Oc_J95vrb_vP7Pbrpy_7q1vmyozMjPGuA46ydV4pxVF3sjadUg41tw6dkeAlF4aLFoVotamVU5JDLyvddVqck_cbd4nh5-pTbh7CGsv41HAhVQUGEEuKb6nnBdH3zRLHg43HBqF5Ut9s6puivnlW34hSeveCXtuD7_5W_rguAbEFUnma73389_d_sL8BsROPXw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Dimaano, Niña Gracel</creator><creator>Yamaguchi, Takuya</creator><creator>Fukunishi, Kanade</creator><creator>Tominaga, Tohru</creator><creator>Iwakami, Satoshi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-6231-0851</orcidid><orcidid>https://orcid.org/0000-0002-7793-7163</orcidid><orcidid>https://orcid.org/0000-0002-7533-430X</orcidid><orcidid>https://orcid.org/0000-0003-4012-9899</orcidid></search><sort><creationdate>20200301</creationdate><title>Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon</title><author>Dimaano, Niña Gracel ; Yamaguchi, Takuya ; Fukunishi, Kanade ; Tominaga, Tohru ; Iwakami, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-99ecd0215bce666217d589d66c172ac1c950e523923b133b7986c6520f547dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>4-Hydroxyphenylpyruvate dioxygenase</topic><topic>Acetolactate synthase</topic><topic>Acetolactate Synthase - metabolism</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - enzymology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Chromatography, Liquid</topic><topic>Cross-resistance</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Cytochrome P450</topic><topic>D-Xylulose 5-phosphate</topic><topic>Desaturase</topic><topic>E coli</topic><topic>Echinochloa - drug effects</topic><topic>Echinochloa - enzymology</topic><topic>Echinochloa phyllopogon</topic><topic>Ectopic expression</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Gene Expression Regulation, Plant</topic><topic>HemA gene</topic><topic>Herbicide resistance</topic><topic>Herbicide Resistance - genetics</topic><topic>Herbicides</topic><topic>Herbicides - pharmacology</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>N-Terminus</topic><topic>Photosystem II</topic><topic>Plant Pathology</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified - drug effects</topic><topic>Protoporphyrinogen oxidase</topic><topic>Seeds</topic><topic>Substrate preferences</topic><topic>Substrate Specificity</topic><topic>Sulfonylurea Compounds - pharmacology</topic><topic>Tandem Mass Spectrometry</topic><topic>Temperature</topic><topic>Xylulose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dimaano, Niña Gracel</creatorcontrib><creatorcontrib>Yamaguchi, Takuya</creatorcontrib><creatorcontrib>Fukunishi, Kanade</creatorcontrib><creatorcontrib>Tominaga, Tohru</creatorcontrib><creatorcontrib>Iwakami, Satoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dimaano, Niña Gracel</au><au>Yamaguchi, Takuya</au><au>Fukunishi, Kanade</au><au>Tominaga, Tohru</au><au>Iwakami, Satoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>102</volume><issue>4-5</issue><spage>403</spage><epage>416</epage><pages>403-416</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Key message CYP81A P450s armor Echinochloa phyllopogon against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in E. phyllopogon and other related species. Metabolism-based herbicide resistance is a major threat to agriculture, as it is unpredictable and could extend resistance to different chemical groups and modes of action, encompassing existing, novel and to-be-discovered herbicides. Limited information on the enzymes involved in herbicide metabolism has hindered the prediction of cross-resistance in weeds. Members of CYP81A subfamily in multiple herbicide resistant (MHR) Echinochloa phyllopogon were previously identified for conferring cross-resistance to six unrelated herbicide classes. This suggests a critical role of CYP81As in endowing unpredictable cross-resistances in E. phyllopogon , thus the functions of all its nine putative functional CYP81A genes to 33 herbicides from 24 chemical groups were characterized. Ectopic expression in Arabidopsis thaliana identified the CYP81As that can confer resistance to multiple and diverse herbicides. The CYP81As were further characterized for their enzymatic functions in Escherichia coli. CYP81A expression in E. coli was optimized via modification of the N-terminus, co-expression with HemA gene and culture at optimal temperature. CYP81As metabolized its herbicide substrates into hydroxylated, N -/ O -demethylated or both products. The cross-resistance pattern conferred by CYP81As is geared towards all chemical groups of acetolactate synthase inhibitors and is expanded to herbicides inhibiting photosystem II, phytoene desaturase, protoporphyrinogen oxidase, 4-hydroxyphenylpyruvate dioxygenase, and 1-deoxy- d -xylulose 5-phosphate synthase. Cross-resistance to herbicides pyrimisulfan, propyrisulfuron, and mesotrione was predicted and confirmed in MHR E. phyllopogon . This study demonstrated that the functional characterization of the key enzymes for herbicide metabolism could disclose the cross-resistance pattern and identify appropriate chemical options to manage the existing and unexpected cross-resistances in E. phyllopogon.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>31898147</pmid><doi>10.1007/s11103-019-00954-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6231-0851</orcidid><orcidid>https://orcid.org/0000-0002-7793-7163</orcidid><orcidid>https://orcid.org/0000-0002-7533-430X</orcidid><orcidid>https://orcid.org/0000-0003-4012-9899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-4412
ispartof Plant molecular biology, 2020-03, Vol.102 (4-5), p.403-416
issn 0167-4412
1573-5028
language eng
recordid cdi_proquest_journals_2356409011
source MEDLINE; SpringerLink Journals
subjects 4-Hydroxyphenylpyruvate dioxygenase
Acetolactate synthase
Acetolactate Synthase - metabolism
Arabidopsis - drug effects
Arabidopsis - enzymology
Biochemistry
Biomedical and Life Sciences
Chromatography, Liquid
Cross-resistance
Cytochrome P-450 Enzyme System - metabolism
Cytochrome P450
D-Xylulose 5-phosphate
Desaturase
E coli
Echinochloa - drug effects
Echinochloa - enzymology
Echinochloa phyllopogon
Ectopic expression
Enzymes
Escherichia coli
Gene Expression Regulation, Plant
HemA gene
Herbicide resistance
Herbicide Resistance - genetics
Herbicides
Herbicides - pharmacology
Life Sciences
Metabolism
N-Terminus
Photosystem II
Plant Pathology
Plant Sciences
Plants, Genetically Modified - drug effects
Protoporphyrinogen oxidase
Seeds
Substrate preferences
Substrate Specificity
Sulfonylurea Compounds - pharmacology
Tandem Mass Spectrometry
Temperature
Xylulose
title Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20characterization%20of%20cytochrome%20P450%20CYP81A%20subfamily%20to%20disclose%20the%20pattern%20of%20cross-resistance%20in%20Echinochloa%20phyllopogon&rft.jtitle=Plant%20molecular%20biology&rft.au=Dimaano,%20Ni%C3%B1a%20Gracel&rft.date=2020-03-01&rft.volume=102&rft.issue=4-5&rft.spage=403&rft.epage=416&rft.pages=403-416&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-019-00954-3&rft_dat=%3Cproquest_cross%3E2356409011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2356409011&rft_id=info:pmid/31898147&rfr_iscdi=true