Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon

Key message CYP81A P450s armor Echinochloa phyllopogon against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in E. phyllopogon and other related species. Metabolism-based herbicide resistance is a major threat to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 2020-03, Vol.102 (4-5), p.403-416
Hauptverfasser: Dimaano, Niña Gracel, Yamaguchi, Takuya, Fukunishi, Kanade, Tominaga, Tohru, Iwakami, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Key message CYP81A P450s armor Echinochloa phyllopogon against diverse and several herbicide chemistries. CYP81A substrate preferences can be a basis for cross-resistance prediction and management in E. phyllopogon and other related species. Metabolism-based herbicide resistance is a major threat to agriculture, as it is unpredictable and could extend resistance to different chemical groups and modes of action, encompassing existing, novel and to-be-discovered herbicides. Limited information on the enzymes involved in herbicide metabolism has hindered the prediction of cross-resistance in weeds. Members of CYP81A subfamily in multiple herbicide resistant (MHR) Echinochloa phyllopogon were previously identified for conferring cross-resistance to six unrelated herbicide classes. This suggests a critical role of CYP81As in endowing unpredictable cross-resistances in E. phyllopogon , thus the functions of all its nine putative functional CYP81A genes to 33 herbicides from 24 chemical groups were characterized. Ectopic expression in Arabidopsis thaliana identified the CYP81As that can confer resistance to multiple and diverse herbicides. The CYP81As were further characterized for their enzymatic functions in Escherichia coli. CYP81A expression in E. coli was optimized via modification of the N-terminus, co-expression with HemA gene and culture at optimal temperature. CYP81As metabolized its herbicide substrates into hydroxylated, N -/ O -demethylated or both products. The cross-resistance pattern conferred by CYP81As is geared towards all chemical groups of acetolactate synthase inhibitors and is expanded to herbicides inhibiting photosystem II, phytoene desaturase, protoporphyrinogen oxidase, 4-hydroxyphenylpyruvate dioxygenase, and 1-deoxy- d -xylulose 5-phosphate synthase. Cross-resistance to herbicides pyrimisulfan, propyrisulfuron, and mesotrione was predicted and confirmed in MHR E. phyllopogon . This study demonstrated that the functional characterization of the key enzymes for herbicide metabolism could disclose the cross-resistance pattern and identify appropriate chemical options to manage the existing and unexpected cross-resistances in E. phyllopogon.
ISSN:0167-4412
1573-5028
DOI:10.1007/s11103-019-00954-3