Multidimensional clinical data denoising via Bayesian CP factorization

CANDECOMP/PARAFAC (CP) tensor factorization is an efficient technique for incomplete tensor-data processing through capturing the multilinear latent factors. Based on the incorporate a sparsity-inducing prior over multiple latent factors and appropriate hyper-priors over all hyper-parameters, a Baye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2020, Vol.63 (2), p.249-254
Hauptverfasser: Cui, GaoChao, Zhu, Li, Gui, LiHua, Zhao, QiBin, Zhang, JianHai, Cao, JianTing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CANDECOMP/PARAFAC (CP) tensor factorization is an efficient technique for incomplete tensor-data processing through capturing the multilinear latent factors. Based on the incorporate a sparsity-inducing prior over multiple latent factors and appropriate hyper-priors over all hyper-parameters, a Bayesian-based hierarchical probabilistic CP factorization model could be formed. By this way, the rank of the incomplete tensor can be determined automatically. In this paper, we explored the tensor completion method in processing incomplete multidimensional electroencephalogram (EEG) and magnetic resonance imaging (MRI) clinical data. The empirical results indicated that the Bayesian CP tensor factorization of incomplete data method can effectively recover EEG signal with missing data and denoised the noisy MRI data.
ISSN:1674-7321
1869-1900
DOI:10.1007/s11431-018-9493-9