p-Convergent Operators and the p-Schur Property

In this article we obtain a characterization of the class of p -convergent operators between two Banach spaces in terms of p -( V ) subsets of the dual space. Also, for 1 ≤ p < q ≤ ∞, by introducing the concepts of Pelczyński's properties ( V ) p , q and ( V *) p , q , we obtain a condition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis mathematica (Budapest) 2020-03, Vol.46 (1), p.1-12
Hauptverfasser: Alikhani, M., Fakhar, M., Zafarani, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 1
container_title Analysis mathematica (Budapest)
container_volume 46
creator Alikhani, M.
Fakhar, M.
Zafarani, J.
description In this article we obtain a characterization of the class of p -convergent operators between two Banach spaces in terms of p -( V ) subsets of the dual space. Also, for 1 ≤ p < q ≤ ∞, by introducing the concepts of Pelczyński's properties ( V ) p , q and ( V *) p , q , we obtain a condition that ensures that q -convergent operators are p -convergent operators. Some characterizations of the p -Schur property of Banach spaces and their dual spaces are deduced.
doi_str_mv 10.1007/s10476-020-0011-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2355318823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355318823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2a94b68afe110b113fd5658ac8280872503971aa2ae3326979ad36ca3e0466403</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFZ_gLuA67H3zp1XlhJ8QaGCCu6GaTJpLZrEmUTovzclgitXd3HOdy58jF0iXCOAWSQEaTQHARwAkcsjNkNlLReG3o7ZDJCIk1XilJ2ltAOAXFuasUXHi7b5DnETmj5bdSH6vo0p802V9duQdfy53A4xe4rtmPX7c3ZS-48ULn7vnL3e3b4UD3y5un8sbpa8JNQ9Fz6Xa219HRBhjUh1pbSyvrTCgjVCAeUGvRc-EAmdm9xXpEtPAaTWEmjOrqbdLrZfQ0i927VDbMaXTpBShNYKGls4tcrYphRD7br4_unj3iG4gxc3eXGjF3fw4uTIiIlJY7fZhPi3_D_0A40kYrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355318823</pqid></control><display><type>article</type><title>p-Convergent Operators and the p-Schur Property</title><source>SpringerLink Journals</source><creator>Alikhani, M. ; Fakhar, M. ; Zafarani, J.</creator><creatorcontrib>Alikhani, M. ; Fakhar, M. ; Zafarani, J.</creatorcontrib><description>In this article we obtain a characterization of the class of p -convergent operators between two Banach spaces in terms of p -( V ) subsets of the dual space. Also, for 1 ≤ p &lt; q ≤ ∞, by introducing the concepts of Pelczyński's properties ( V ) p , q and ( V *) p , q , we obtain a condition that ensures that q -convergent operators are p -convergent operators. Some characterizations of the p -Schur property of Banach spaces and their dual spaces are deduced.</description><identifier>ISSN: 0133-3852</identifier><identifier>EISSN: 1588-273X</identifier><identifier>DOI: 10.1007/s10476-020-0011-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Banach spaces ; Convergence ; Mathematics ; Mathematics and Statistics ; Operators</subject><ispartof>Analysis mathematica (Budapest), 2020-03, Vol.46 (1), p.1-12</ispartof><rights>Akadémiai Kiadó, Budapest 2020</rights><rights>2020© Akadémiai Kiadó, Budapest 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2a94b68afe110b113fd5658ac8280872503971aa2ae3326979ad36ca3e0466403</citedby><cites>FETCH-LOGICAL-c316t-2a94b68afe110b113fd5658ac8280872503971aa2ae3326979ad36ca3e0466403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10476-020-0011-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10476-020-0011-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Alikhani, M.</creatorcontrib><creatorcontrib>Fakhar, M.</creatorcontrib><creatorcontrib>Zafarani, J.</creatorcontrib><title>p-Convergent Operators and the p-Schur Property</title><title>Analysis mathematica (Budapest)</title><addtitle>Anal Math</addtitle><description>In this article we obtain a characterization of the class of p -convergent operators between two Banach spaces in terms of p -( V ) subsets of the dual space. Also, for 1 ≤ p &lt; q ≤ ∞, by introducing the concepts of Pelczyński's properties ( V ) p , q and ( V *) p , q , we obtain a condition that ensures that q -convergent operators are p -convergent operators. Some characterizations of the p -Schur property of Banach spaces and their dual spaces are deduced.</description><subject>Analysis</subject><subject>Banach spaces</subject><subject>Convergence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><issn>0133-3852</issn><issn>1588-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRsFZ_gLuA67H3zp1XlhJ8QaGCCu6GaTJpLZrEmUTovzclgitXd3HOdy58jF0iXCOAWSQEaTQHARwAkcsjNkNlLReG3o7ZDJCIk1XilJ2ltAOAXFuasUXHi7b5DnETmj5bdSH6vo0p802V9duQdfy53A4xe4rtmPX7c3ZS-48ULn7vnL3e3b4UD3y5un8sbpa8JNQ9Fz6Xa219HRBhjUh1pbSyvrTCgjVCAeUGvRc-EAmdm9xXpEtPAaTWEmjOrqbdLrZfQ0i927VDbMaXTpBShNYKGls4tcrYphRD7br4_unj3iG4gxc3eXGjF3fw4uTIiIlJY7fZhPi3_D_0A40kYrs</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Alikhani, M.</creator><creator>Fakhar, M.</creator><creator>Zafarani, J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>p-Convergent Operators and the p-Schur Property</title><author>Alikhani, M. ; Fakhar, M. ; Zafarani, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2a94b68afe110b113fd5658ac8280872503971aa2ae3326979ad36ca3e0466403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Banach spaces</topic><topic>Convergence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alikhani, M.</creatorcontrib><creatorcontrib>Fakhar, M.</creatorcontrib><creatorcontrib>Zafarani, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Analysis mathematica (Budapest)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alikhani, M.</au><au>Fakhar, M.</au><au>Zafarani, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p-Convergent Operators and the p-Schur Property</atitle><jtitle>Analysis mathematica (Budapest)</jtitle><stitle>Anal Math</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>46</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0133-3852</issn><eissn>1588-273X</eissn><abstract>In this article we obtain a characterization of the class of p -convergent operators between two Banach spaces in terms of p -( V ) subsets of the dual space. Also, for 1 ≤ p &lt; q ≤ ∞, by introducing the concepts of Pelczyński's properties ( V ) p , q and ( V *) p , q , we obtain a condition that ensures that q -convergent operators are p -convergent operators. Some characterizations of the p -Schur property of Banach spaces and their dual spaces are deduced.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10476-020-0011-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0133-3852
ispartof Analysis mathematica (Budapest), 2020-03, Vol.46 (1), p.1-12
issn 0133-3852
1588-273X
language eng
recordid cdi_proquest_journals_2355318823
source SpringerLink Journals
subjects Analysis
Banach spaces
Convergence
Mathematics
Mathematics and Statistics
Operators
title p-Convergent Operators and the p-Schur Property
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p-Convergent%20Operators%20and%20the%20p-Schur%20Property&rft.jtitle=Analysis%20mathematica%20(Budapest)&rft.au=Alikhani,%20M.&rft.date=2020-03-01&rft.volume=46&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0133-3852&rft.eissn=1588-273X&rft_id=info:doi/10.1007/s10476-020-0011-4&rft_dat=%3Cproquest_cross%3E2355318823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355318823&rft_id=info:pmid/&rfr_iscdi=true