p-Convergent Operators and the p-Schur Property

In this article we obtain a characterization of the class of p -convergent operators between two Banach spaces in terms of p -( V ) subsets of the dual space. Also, for 1 ≤ p < q ≤ ∞, by introducing the concepts of Pelczyński's properties ( V ) p , q and ( V *) p , q , we obtain a condition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis mathematica (Budapest) 2020-03, Vol.46 (1), p.1-12
Hauptverfasser: Alikhani, M., Fakhar, M., Zafarani, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we obtain a characterization of the class of p -convergent operators between two Banach spaces in terms of p -( V ) subsets of the dual space. Also, for 1 ≤ p < q ≤ ∞, by introducing the concepts of Pelczyński's properties ( V ) p , q and ( V *) p , q , we obtain a condition that ensures that q -convergent operators are p -convergent operators. Some characterizations of the p -Schur property of Banach spaces and their dual spaces are deduced.
ISSN:0133-3852
1588-273X
DOI:10.1007/s10476-020-0011-4