p-Convergent Operators and the p-Schur Property
In this article we obtain a characterization of the class of p -convergent operators between two Banach spaces in terms of p -( V ) subsets of the dual space. Also, for 1 ≤ p < q ≤ ∞, by introducing the concepts of Pelczyński's properties ( V ) p , q and ( V *) p , q , we obtain a condition...
Gespeichert in:
Veröffentlicht in: | Analysis mathematica (Budapest) 2020-03, Vol.46 (1), p.1-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we obtain a characterization of the class of
p
-convergent operators between two Banach spaces in terms of
p
-(
V
) subsets of the dual space. Also, for 1 ≤
p
<
q
≤ ∞, by introducing the concepts of Pelczyński's properties (
V
)
p
,
q
and (
V
*)
p
,
q
, we obtain a condition that ensures that
q
-convergent operators are
p
-convergent operators. Some characterizations of the
p
-Schur property of Banach spaces and their dual spaces are deduced. |
---|---|
ISSN: | 0133-3852 1588-273X |
DOI: | 10.1007/s10476-020-0011-4 |