Characterization of the Mixing Induced by Multiple Elevated Jets in Cross Flow

Experimental and numerical consideration is given in the present work to an inline, inclined triple elliptic jet-group discharged in cross flow, a common configuration widely present in several domains, namely environmental, industrial and even medical. The experiments were described by particle ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum Defect and diffusion forum, 2020-02, Vol.399, p.3-9
Hauptverfasser: Radhouane, Amina, Mahjoub Said, Nejla, Mhiri, Hatem, Bournot, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experimental and numerical consideration is given in the present work to an inline, inclined triple elliptic jet-group discharged in cross flow, a common configuration widely present in several domains, namely environmental, industrial and even medical. The experiments were described by particle image velocimetry and hot wire anemometry measurements, and the numerical simulation was based upon the finite volume method together with a non uniform grid system tightened close to the discharging nozzles. Generally, optimizing similar configurations is meant to reach optimum mixings in terms of heat and/or mass transfers. The present work will be particularly dedicated to the heat transfers generated within the examined multiple jet in cross flow configuration, for jets emitted under an injection height equivalent to , and under a variable injection ratio. After presenting the handled geometry, a validation of the numerical model is proposed. Afterward, a discussion of the reduced static temperature is presented. This is a highly interesting parameter due to its closeness, if not similarity under some circumstances, to the cooling efficiency.
ISSN:1012-0386
1662-9507
1662-9507
DOI:10.4028/www.scientific.net/DDF.399.3