Multiple Points of Operator Semistable Lévy Processes

We determine the Hausdorff dimension of the set of k -multiple points for a symmetric operator semistable Lévy process X = { X ( t ) , t ∈ R + } in terms of the eigenvalues of its stability exponent. We also give a necessary and sufficient condition for the existence of k -multiple points. Our resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2020-03, Vol.33 (1), p.153-179
Hauptverfasser: Luks, Tomasz, Xiao, Yimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We determine the Hausdorff dimension of the set of k -multiple points for a symmetric operator semistable Lévy process X = { X ( t ) , t ∈ R + } in terms of the eigenvalues of its stability exponent. We also give a necessary and sufficient condition for the existence of k -multiple points. Our results extend to all k ≥ 2 the recent work (Luks and Xiao in J Theor Probab 30(1):297–325, 2017 ) where the set of double points ( k = 2 ) was studied in the symmetric operator stable case.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-018-0859-4