Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics
Coaxial electrospinning with the ability to use simultaneously two separate solvents provides a promising strategy for drug delivery. Nevertheless, controlled release of hydrophilic and sensitive therapeutics from slow biodegradable polymers is still challenging. To address this gap, we fabricated c...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2020-03, Vol.108, p.110432, Article 110432 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coaxial electrospinning with the ability to use simultaneously two separate solvents provides a promising strategy for drug delivery. Nevertheless, controlled release of hydrophilic and sensitive therapeutics from slow biodegradable polymers is still challenging. To address this gap, we fabricated core-sheath fibers for dual delivery of lysozyme, as a model protein, and phenytoin sodium as a small therapeutic molecule. The sheath was processed by a gelatin solution while the core fibers were fabricated from an aqueous gelatin/PVA solution. Microstructural studies by transmission and scanning electron microscopy reveal the formation of homogeneous core-sheath nanofibers with an outer and inner diameter of 180 ± 48 nm and 106 ± 30 nm, respectively. Thermal gravimetric analysis determines that the mass loss of the core-sheath fibers fall between the mass loss values of individual sheath and core fibers. Swelling studies indicate higher water absorption of the core-sheath mat compared to the separate sheath and core membranes. In vitro drug release studies in Phosphate Buffered Saline (PBS) determine sustained release of the therapeutics from the core-sheath structure. The release trails three stages including non-Fickian diffusion at the early stage followed by the Fickian diffusion mechanism. The present study shows a useful approach to design core-sheath nanofibrous membranes with controlled and programmable drug release profiles.
•Dual delivery of therapeutics from core-shell fibers was studied.•Core-shell fibers were fabricated by coaxial electrospinning of gelation (core) and gelatin/PVA (sheath) solutions.•Three-stage release kinetics from the core-sheath fibers was shown.•Improved mechanical properties and swelling behavior were reported. |
---|---|
ISSN: | 0928-4931 1873-0191 |
DOI: | 10.1016/j.msec.2019.110432 |