Load sensitive super-hardness of nanocrystalline diamond coatings

Synthetic diamond films have attracted great attention for their extreme properties and potential engineering applications as protective and wear-resistant coating for cutting tools. Nanocrystalline diamond (NCD) coatings were synthesized from CH4/H2/Ar (1/10/89%) microwave plasma at four deposition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2020-01, Vol.101, p.107653, Article 107653
Hauptverfasser: Cicala, Grazia, Magaletti, Vittorio, Carbone, Giuseppe, Senesi, Giorgio Saverio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthetic diamond films have attracted great attention for their extreme properties and potential engineering applications as protective and wear-resistant coating for cutting tools. Nanocrystalline diamond (NCD) coatings were synthesized from CH4/H2/Ar (1/10/89%) microwave plasma at four deposition temperatures (TD) ranging from 653 to 884 °C. The hardness (H) and Young's modulus (E) of NCD coatings measured at three different loads (10, 25 and 47 mN) depended on the nanoindentation load-level. The NCD coating produced at the lowest TD showed values of H = 121 ± 25 GPa and E = 1036 ± 163 GPa at the highest load. This result was attributed to the formation of elongated nanocrystallites at low deposition temperature. Further, the NCD coating obtained at lower deposition temperature exhibited an anomalous indentation size effect (ISE), i.e. a reverse ISE (RISE), which was ascribed to the heterogeneity of grain sizes along the [220] and [111] directions. Finally, a positive and negative (inverse) Hall-Petch behavior was observed for grain sizes along the [111] and [220] directions, respectively. [Display omitted] •High values of hardness and Young's modulus were found for low temperature NCD films.•NCD coatings obtained at lower deposition temperature exhibited an anomalous reverse ISE effect.•Hall-Petch and inverse Hall-Petch effects were observed for grain sizes determined along [111] and [220] directions.
ISSN:0925-9635
1879-0062
DOI:10.1016/j.diamond.2019.107653