On self-dual and LCD double circulant and double negacirculant codes over Fq+uFq

Double circulant codes of length 2 n over the non-local ring R = F q + u F q , u 2 = u , are studied when q is an odd prime power, and − 1 is a square in F q . Double negacirculant codes of length 2 n are studied over R when n is even, and q is an odd prime power. Exact enumeration of self-dual and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryptography and communications 2020, Vol.12 (1), p.53-70
Hauptverfasser: Shi, Minjia, Zhu, Hongwei, Qian, Liqin, Sok, Lin, Solé, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Double circulant codes of length 2 n over the non-local ring R = F q + u F q , u 2 = u , are studied when q is an odd prime power, and − 1 is a square in F q . Double negacirculant codes of length 2 n are studied over R when n is even, and q is an odd prime power. Exact enumeration of self-dual and LCD such codes for given length 2 n is given. Employing a duality-preserving Gray map, self-dual and LCD codes of length 4 n over F q are constructed. Using random coding and the Artin conjecture, the relative distance of these codes is bounded below for n → ∞ . The parameters of examples of modest lengths are computed. Several such codes are optimal.
ISSN:1936-2447
1936-2455
DOI:10.1007/s12095-019-00363-9