Interface modification of sputtered NiOx as the hole-transporting layer for efficient inverted planar perovskite solar cells

Nickel oxide (NiOx) as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) has been studied extensively in recent years. However, unlike the solution-processed NiOx films, magnetron sputtered NiOx exhibits relatively low conductivity and imperfect band alignment with perovskites, severe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-01, Vol.8 (6), p.1972-1980
Hauptverfasser: Zheng, Xiaolu, Song, Zhaoning, Chen, Zhiliang, Sandip Singh Bista, Gui, Pengbin, Shrestha, Niraj, Chen, Cong, Li, Chongwen, Yin, Xinxing, Awni, Rasha A, Lei, Hongwei, Chen, Tao, Ellingson, Randy J, Yanfa Yan, Guojia Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nickel oxide (NiOx) as a hole-transporting layer (HTL) in perovskite solar cells (PSCs) has been studied extensively in recent years. However, unlike the solution-processed NiOx films, magnetron sputtered NiOx exhibits relatively low conductivity and imperfect band alignment with perovskites, severely limiting the device performance of PSCs. In this study, a synergistically combined strategy consisting of triple interface treatments – including post-annealing, O2-plasma, and potassium chloride treatments – is employed to modulate the optoelectronic properties of the sputtered NiOx films. Through this approach, we successfully obtained NiOx films with increased carrier density and conductivity, better energy level alignment with the perovskite absorber layer, reduced interface trap density, and improved interfacial charge extraction. PSCs using this modified sputtered NiOx as the HTL deliver a highest stabilized efficiency of 18.7%. Our result offers an alternative method to manipulate sputtered NiOx thin film properties and thereby sheds light on a manufacturing pathway to perovskite solar cells featuring sputtered NiOx HTL.
ISSN:2050-7526
2050-7534
DOI:10.1039/c9tc05759e