Impact of surface ultrasonic rolling on cavitation erosion behavior of 304 stainless steel

Surface ultrasonic rolling process (SURP) is a prior self-nano-technology of surface strengthening to improve the cavitation resistance of metal materials. In the paper, the 304 stainless steel (304SS) specimens were processed into 5 times, 10 times, 15 times and 20 times by SURP, then were cut into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2020-02, Vol.383, p.125280, Article 125280
Hauptverfasser: Li, Chaoyong, Zhu, Rongtao, Zhang, Xinxi, Huang, Pengfei, Wang, Xian, Wang, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface ultrasonic rolling process (SURP) is a prior self-nano-technology of surface strengthening to improve the cavitation resistance of metal materials. In the paper, the 304 stainless steel (304SS) specimens were processed into 5 times, 10 times, 15 times and 20 times by SURP, then were cut into pieces along the SURP surface. In order to investigate impact of SURP on cavitation erosion behavior of 304SS, microstructure, mechanical properties and phase distribution of 304SS with difference SURP times were characterized firstly. Subsequently, ultrasonic cavitation erosion process and electrochemical measurements was experimented respectively: the specimens with different SURP times were subjected to 3 h in ore pulp solution (The mass fraction of 3.5% NaCl and 5% plumbum-zinc) by ultrasonic cavitation erosion process (UCEP), meanwhile, the electrochemical behaviors of the 304SS specimens with difference SURP times, such as open circuit potential (OCP), polarization curves and electrochemical impedance spectroscopy (EIS) were measured successively. Finally, the influences of the mechanical properties and corrosion characteristics of the 304SS with different microstructures after SURP on cavitation corrosion resistance were discussed in details, in the meantime, the microscopic mechanisms of the cavitation resistance for 304SS with different SURP times were investigated. The result shows that SURP is significantly beneficial to protect 304SS from the cavitation erosion behavior via introduction of deformation layers, transformation between martensite and austenitic, formation of passivation film, grain refinement and the surface hardness as well as residual stress of the 304SS were enhanced accordingly. However, the energy transfer of SURP is not only used to surface hardening, grain refinement, slip bands establishment but also defects formation, overmuch energy transfer plays the opposite role. Therefore SURP 10 times is a suitable SURP times that makes 304SS achieved optimal cavitation resistance. [Display omitted] •304SS specimens were processed by surface ultrasonic rolling process (SURP).•Microstructure, mechanical properties and phase of SURP specimens were characterized.•Ultrasonic cavitation process and electrochemical measurement were test respectively.•SURP is significantly beneficial to protect 304SS from cavitation erosion behavior.•SURP 10 times is the proper time makes 304SS achieved optimal cavitation resistance.
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2019.125280