Isogeometric boundary element method for acoustic scattering by a submarine
Isogeometric analysis with the boundary element method (IGABEM) has recently gained interest. In this paper, the approximability of IGABEM on 3D acoustic scattering problems will be investigated and a new improved BeTSSi submarine will be presented as a benchmark example. Both Galerkin and collocati...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2020-02, Vol.359, p.112670, Article 112670 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Isogeometric analysis with the boundary element method (IGABEM) has recently gained interest. In this paper, the approximability of IGABEM on 3D acoustic scattering problems will be investigated and a new improved BeTSSi submarine will be presented as a benchmark example. Both Galerkin and collocation are considered in combination with several boundary integral equations (BIE). In addition to the conventional BIE, regularized versions of this BIE will be considered. Moreover, the hyper-singular BIE and the Burton–Miller formulation are also considered. A new adaptive integration routine is presented, and the numerical examples show the importance of the integration procedure in the boundary element method. The numerical examples also include comparison between standard BEM and IGABEM, which again verifies the higher accuracy obtained from the increased inter-element continuity of the spline basis functions. One of the main objectives in this paper is benchmarking acoustic scattering problems, and the method of manufactured solution will be used frequently in this regard.
•The isogeometric boundary element method is used to solve acoustic scattering problems.•A new integration routine is presented and investigated with several boundary integral formulations.•A submarine model is presented as a benchmark to investigate the present approach. |
---|---|
ISSN: | 0045-7825 1879-2138 |
DOI: | 10.1016/j.cma.2019.112670 |