Crosspoint modification for multi-patch isogeometric analysis

A crosspoint modification for general Cn continuous mortar coupling conditions is presented. In particular, we modify the extended mortar method as introduced in Schuß et al. (2019) and Dittmann et al. (2019) to deal with crosspoints as they arise in multi-patch geometries. This modification is cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2020-03, Vol.360, p.112768, Article 112768
Hauptverfasser: Dittmann, M., Schuß, S., Wohlmuth, B., Hesch, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A crosspoint modification for general Cn continuous mortar coupling conditions is presented. In particular, we modify the extended mortar method as introduced in Schuß et al. (2019) and Dittmann et al. (2019) to deal with crosspoints as they arise in multi-patch geometries. This modification is constructed in such a way, that we decouple the Lagrange multipliers at the crosspoint to avoid a global coupling condition across all interfaces. Moreover, we recast the underlying B-Splines such that they preserve the higher order best approximation property across the interface and the crosspoint. A detailed investigation is presented in the context of second order thermal problems, fourth order Cahn–Hilliard and sixth order Swift–Hohenberg formulations. •Extended mortar method for Cn continuous coupling conditions.•Crosspoint modification for IGA.•Best approximation property across the interface and the crosspoint.•Application to fourth-order Cahn–Hilliard and sixth-order Swift–Hohenberg problems.
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2019.112768