Virtual element for the buckling problem of Kirchhoff–Love plates

In this paper, we develop a virtual element method (VEM) of high order to solve the fourth order plate buckling eigenvalue problem on polygonal meshes. We write a variational formulation based on the Kirchhoff–Love model depending on the transverse displacement of the plate. We propose a C1 conformi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2020-03, Vol.360, p.112687, Article 112687
Hauptverfasser: Mora, David, Velásquez, Iván
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we develop a virtual element method (VEM) of high order to solve the fourth order plate buckling eigenvalue problem on polygonal meshes. We write a variational formulation based on the Kirchhoff–Love model depending on the transverse displacement of the plate. We propose a C1 conforming virtual element discretization of arbitrary order k≥2 and we use the so-called Babuška–Osborn abstract spectral approximation theory to show that the resulting scheme provides a correct approximation of the spectrum and prove optimal order error estimates for the buckling modes (eigenfunctions) and a double order for the buckling coefficients (eigenvalues). Finally, we report some numerical experiments illustrating the behavior of the proposed scheme and confirming our theoretical results on different families of meshes.
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2019.112687