Optimization of Conditions for Maximal Production of Recombinant Thermostable Cellulase from Thermotoga naphthophila using E. coli BL21-CodonPlus (DE3) as Expression Host

ABSTRACT Current study was designed for the development of an economic and environment friendly mechanism for the production of thermostable cellulase. Production of cellulase was focused due to its diverse range of application in industry. In the present study, conditions were optimized for the max...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pakistan journal of zoology 2019-08, Vol.51 (4), p.1371
Hauptverfasser: Khalid, Aisha, Tayyab, Muhammad, Hashmi, Abu Saeed, Yaqub, Tahir, Awan, Ali Raza, Wasim, Muhammad, Saeed, Shagufta, Firyal, Sehrish, Shakoori, Abdul Rauf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Current study was designed for the development of an economic and environment friendly mechanism for the production of thermostable cellulase. Production of cellulase was focused due to its diverse range of application in industry. In the present study, conditions were optimized for the maximal production of recombinant thermostable cellulase from Thermotoga naphthophila using BL21-CodonPlus (DE3) cells as expression host and pET28a as expression vector. Effect of various concentration of Isopropyl β-D-1-thiogalactopyranoside (IPTG), post induction time, effect of temperature and pH were examined for the maximal production of recombinant cellulase. The effect of supplementation of LB medium with additional carbon and nitrogen sources was also analyzed for maximal production of recombinant protein. Higher level enzyme activity was recorded at 25°C, pH 7.0 when the cells were induced with 0.5 mM IPTG with 22h post induction incubation. Supplementation of LB medium with 1% glucose and yeast extract enhanced the production of recombinant thermostable cellulase. Enzyme showed strong potential for its use in paper and poultry feed industry. Under the optimal conditions we could able to produce 48 U/mL of recombinant cellulase.
ISSN:0030-9923
DOI:10.17582/journal.pjz/2019.51.4.1371.1377