Orthogonal incremental non-negative matrix factorization algorithm and its application in image classification

To improve the sparseness of the base matrix in incremental non-negative matrix factorization, we in this paper present a new method, orthogonal incremental non-negative matrix factorization algorithm (OINMF), which combines the orthogonality constraint with incremental learning. OINMF adopts batch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2020-05, Vol.39 (2), Article 54
Hauptverfasser: Ge, Shaodi, Luo, Liuhong, Li, Hongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the sparseness of the base matrix in incremental non-negative matrix factorization, we in this paper present a new method, orthogonal incremental non-negative matrix factorization algorithm (OINMF), which combines the orthogonality constraint with incremental learning. OINMF adopts batch update in the process of incremental learning, and its iterative formulae are obtained using the gradient on the Stiefel manifold. The experiments on image classification show that the proposed method achieves much better sparseness and orthogonality, while retaining time efficiency of incremental learning.
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-020-1091-2