Reattachment streaks in hypersonic compression ramp flow: an input–output analysis

We employ global input–output analysis to quantify amplification of exogenous disturbances in compressible boundary layer flows. Using the spatial structure of the dominant response to time-periodic inputs, we explain the origin of steady reattachment streaks in a hypersonic flow over a compression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-12, Vol.880, p.113-135
Hauptverfasser: Dwivedi, Anubhav, Sidharth, G. S., Nichols, Joseph W., Candler, Graham V., Jovanović, Mihailo R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We employ global input–output analysis to quantify amplification of exogenous disturbances in compressible boundary layer flows. Using the spatial structure of the dominant response to time-periodic inputs, we explain the origin of steady reattachment streaks in a hypersonic flow over a compression ramp. Our analysis of the laminar shock–boundary layer interaction reveals that the streaks arise from a preferential amplification of upstream counter-rotating vortical perturbations with a specific spanwise wavelength. These streaks are associated with heat-flux striations at the wall near flow reattachment and they can trigger transition to turbulence. The streak wavelength predicted by our analysis compares favourably with observations from two different hypersonic compression ramp experiments. Furthermore, our analysis of inviscid transport equations demonstrates that base-flow deceleration contributes to the amplification of streamwise velocity and that the baroclinic effects are responsible for the production of streamwise vorticity. Finally, the appearance of the temperature streaks near reattachment is triggered by the growth of streamwise velocity and streamwise vorticity perturbations as well as by the amplification of upstream temperature perturbations by the reattachment shock.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2019.702