Mxene functionalized polymer composites: Synthesis and applications
[Display omitted] Ever since their inception, Mxene have been gathering immense attention due to their exceptional and functional properties owing to their large surface areas and electronic properties. Mxene are derived from MAX phase by exfoliating them into 2D layers of transition-metal carbide a...
Gespeichert in:
Veröffentlicht in: | European polymer journal 2020-01, Vol.122, p.109367, Article 109367 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Ever since their inception, Mxene have been gathering immense attention due to their exceptional and functional properties owing to their large surface areas and electronic properties. Mxene are derived from MAX phase by exfoliating them into 2D layers of transition-metal carbide and nitrides, using hydrofluoric acid (HF) solutions and sonication. Although the applications of Mxene are limited, numerous composites of Mxene filled with potential scientific and technological applications are being synthesized around the world. Several composites of Mxene like carbon nanotubes, graphene oxide etc. have been studied over the years for high capacity energy storage but these composites sometimes lack various structural and biological properties which steers research towards more flexible solutions, literally and figuratively. Polymers are a great choice for synthesizing composites of Mxene due to their versatility, compatibility and cost. As wearable technology gains popularity, MXene coated polymers emerged as a solution, delivering exceptional flexibility, mechanical and tensile strength in the form of flexible super capacitors. Focussing on the polymer composites of Mxene, this review provides a comprehensive categorical view based on application on the various polymer composites synthesized till date highlighting their promising potential in various fields of science with a vision of their future applications. |
---|---|
ISSN: | 0014-3057 1873-1945 |
DOI: | 10.1016/j.eurpolymj.2019.109367 |