Lagrangian submanifolds of the nearly Kähler 3 × 3 from minimal surfaces in 3

We study non-totally geodesic Lagrangian submanifolds of the nearly Kähler 3 × 3 for which the projection on the first component is nowhere of maximal rank. We show that this property can be expressed in terms of the so-called angle functions and that such Lagrangian submanifolds are closely related...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2019-06, Vol.149 (3), p.655-689
Hauptverfasser: Bektaş, Burcu, Moruz, Marilena, Van der Veken, Joeri, Vrancken, Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study non-totally geodesic Lagrangian submanifolds of the nearly Kähler 3 × 3 for which the projection on the first component is nowhere of maximal rank. We show that this property can be expressed in terms of the so-called angle functions and that such Lagrangian submanifolds are closely related to minimal surfaces in 3. Indeed, starting from an arbitrary minimal surface, we can construct locally a large family of such Lagrangian immersions, including one exceptional example. We also show that locally all such Lagrangian submanifolds can be obtained in this way.
ISSN:0308-2105
1473-7124
DOI:10.1017/prm.2018.43