Free and Properly Discontinuous Actions of Groups on Homotopy 2n-spheres

Let G be a group acting freely, properly discontinuously and cellularly on some finite dimensional CW-complex Σ(2n) which has the homotopy type of the 2n-sphere 2n. Then, that action induces a homomorphism G → Aut(H2n(Σ(2n))). We classify all pairs (G, φ), where G is a virtually cyclic group and φ:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2018-05, Vol.61 (2), p.305-327
Hauptverfasser: Golasiński, Marek, Gonçalves, Daciberg Lima, Jimenez, Rolando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue 2
container_start_page 305
container_title Proceedings of the Edinburgh Mathematical Society
container_volume 61
creator Golasiński, Marek
Gonçalves, Daciberg Lima
Jimenez, Rolando
description Let G be a group acting freely, properly discontinuously and cellularly on some finite dimensional CW-complex Σ(2n) which has the homotopy type of the 2n-sphere 2n. Then, that action induces a homomorphism G → Aut(H2n(Σ(2n))). We classify all pairs (G, φ), where G is a virtually cyclic group and φ: G → Aut(ℤ) is a homomorphism, which are realizable in the way above and the homotopy types of all possible orbit spaces as well. Next, we consider the family of all groups which have virtual cohomological dimension one and which act on some Σ(2n). Those groups consist of free groups and semi-direct products F ⋊ ℤ2 with F a free group. For a group G from the family above and a homomorphism φ: G → Aut(ℤ), we present an algebraic criterion equivalent to the realizability of the pair (G, φ). It turns out that any realizable pair can be realized on some Σ(2n) with dim Σ(2n) ≤ 2n + 1.
doi_str_mv 10.1017/S0013091517000207
format Article
fullrecord <record><control><sourceid>proquest_cambr</sourceid><recordid>TN_cdi_proquest_journals_2352689068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0013091517000207</cupid><sourcerecordid>2352689068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-7dc9a1a8ca5ca10fe201ff366e58b8d0995e76276708f92c8952a3094a3fd0313</originalsourceid><addsrcrecordid>eNplkE9LAzEUxIMouFY_gLeA59WXZPPvWKrtCgUF9byk2US3tMma7B767d1SwYOnNzA_ZniD0C2BewJEPrwBEAaacCIBgII8QwWpRFUyxfQ5Ko52efQv0VXO24mRkpMC1cvkHDahxa8p9i7tDvixyzaGoQtjHDOe26GLIePo8SrFsZ9UwHXcxyH2B0xDmfsvl1y-Rhfe7LK7-b0z9LF8el_U5fpl9byYr0tLqRxK2VptiFHWcGsIeEeBeM-EcFxtVAtacycFlUKC8ppapTk102OVYb4FRtgM3Z1y-xS_R5eHZhvHFKbKhjJOhdIg1ESxE2XNfpO69tP9YQSa42TNv8nYD-LyXO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352689068</pqid></control><display><type>article</type><title>Free and Properly Discontinuous Actions of Groups on Homotopy 2n-spheres</title><source>Cambridge Journals</source><creator>Golasiński, Marek ; Gonçalves, Daciberg Lima ; Jimenez, Rolando</creator><creatorcontrib>Golasiński, Marek ; Gonçalves, Daciberg Lima ; Jimenez, Rolando</creatorcontrib><description>Let G be a group acting freely, properly discontinuously and cellularly on some finite dimensional CW-complex Σ(2n) which has the homotopy type of the 2n-sphere 2n. Then, that action induces a homomorphism G → Aut(H2n(Σ(2n))). We classify all pairs (G, φ), where G is a virtually cyclic group and φ: G → Aut(ℤ) is a homomorphism, which are realizable in the way above and the homotopy types of all possible orbit spaces as well. Next, we consider the family of all groups which have virtual cohomological dimension one and which act on some Σ(2n). Those groups consist of free groups and semi-direct products F ⋊ ℤ2 with F a free group. For a group G from the family above and a homomorphism φ: G → Aut(ℤ), we present an algebraic criterion equivalent to the realizability of the pair (G, φ). It turns out that any realizable pair can be realized on some Σ(2n) with dim Σ(2n) ≤ 2n + 1.</description><identifier>ISSN: 0013-0915</identifier><identifier>EISSN: 1464-3839</identifier><identifier>DOI: 10.1017/S0013091517000207</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Homomorphisms ; Realizability</subject><ispartof>Proceedings of the Edinburgh Mathematical Society, 2018-05, Vol.61 (2), p.305-327</ispartof><rights>Copyright © Edinburgh Mathematical Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0013091517000207/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Golasiński, Marek</creatorcontrib><creatorcontrib>Gonçalves, Daciberg Lima</creatorcontrib><creatorcontrib>Jimenez, Rolando</creatorcontrib><title>Free and Properly Discontinuous Actions of Groups on Homotopy 2n-spheres</title><title>Proceedings of the Edinburgh Mathematical Society</title><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><description>Let G be a group acting freely, properly discontinuously and cellularly on some finite dimensional CW-complex Σ(2n) which has the homotopy type of the 2n-sphere 2n. Then, that action induces a homomorphism G → Aut(H2n(Σ(2n))). We classify all pairs (G, φ), where G is a virtually cyclic group and φ: G → Aut(ℤ) is a homomorphism, which are realizable in the way above and the homotopy types of all possible orbit spaces as well. Next, we consider the family of all groups which have virtual cohomological dimension one and which act on some Σ(2n). Those groups consist of free groups and semi-direct products F ⋊ ℤ2 with F a free group. For a group G from the family above and a homomorphism φ: G → Aut(ℤ), we present an algebraic criterion equivalent to the realizability of the pair (G, φ). It turns out that any realizable pair can be realized on some Σ(2n) with dim Σ(2n) ≤ 2n + 1.</description><subject>Homomorphisms</subject><subject>Realizability</subject><issn>0013-0915</issn><issn>1464-3839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkE9LAzEUxIMouFY_gLeA59WXZPPvWKrtCgUF9byk2US3tMma7B767d1SwYOnNzA_ZniD0C2BewJEPrwBEAaacCIBgII8QwWpRFUyxfQ5Ko52efQv0VXO24mRkpMC1cvkHDahxa8p9i7tDvixyzaGoQtjHDOe26GLIePo8SrFsZ9UwHXcxyH2B0xDmfsvl1y-Rhfe7LK7-b0z9LF8el_U5fpl9byYr0tLqRxK2VptiFHWcGsIeEeBeM-EcFxtVAtacycFlUKC8ppapTk102OVYb4FRtgM3Z1y-xS_R5eHZhvHFKbKhjJOhdIg1ESxE2XNfpO69tP9YQSa42TNv8nYD-LyXO4</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Golasiński, Marek</creator><creator>Gonçalves, Daciberg Lima</creator><creator>Jimenez, Rolando</creator><general>Cambridge University Press</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201805</creationdate><title>Free and Properly Discontinuous Actions of Groups on Homotopy 2n-spheres</title><author>Golasiński, Marek ; Gonçalves, Daciberg Lima ; Jimenez, Rolando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-7dc9a1a8ca5ca10fe201ff366e58b8d0995e76276708f92c8952a3094a3fd0313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Homomorphisms</topic><topic>Realizability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golasiński, Marek</creatorcontrib><creatorcontrib>Gonçalves, Daciberg Lima</creatorcontrib><creatorcontrib>Jimenez, Rolando</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golasiński, Marek</au><au>Gonçalves, Daciberg Lima</au><au>Jimenez, Rolando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free and Properly Discontinuous Actions of Groups on Homotopy 2n-spheres</atitle><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><date>2018-05</date><risdate>2018</risdate><volume>61</volume><issue>2</issue><spage>305</spage><epage>327</epage><pages>305-327</pages><issn>0013-0915</issn><eissn>1464-3839</eissn><abstract>Let G be a group acting freely, properly discontinuously and cellularly on some finite dimensional CW-complex Σ(2n) which has the homotopy type of the 2n-sphere 2n. Then, that action induces a homomorphism G → Aut(H2n(Σ(2n))). We classify all pairs (G, φ), where G is a virtually cyclic group and φ: G → Aut(ℤ) is a homomorphism, which are realizable in the way above and the homotopy types of all possible orbit spaces as well. Next, we consider the family of all groups which have virtual cohomological dimension one and which act on some Σ(2n). Those groups consist of free groups and semi-direct products F ⋊ ℤ2 with F a free group. For a group G from the family above and a homomorphism φ: G → Aut(ℤ), we present an algebraic criterion equivalent to the realizability of the pair (G, φ). It turns out that any realizable pair can be realized on some Σ(2n) with dim Σ(2n) ≤ 2n + 1.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0013091517000207</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-0915
ispartof Proceedings of the Edinburgh Mathematical Society, 2018-05, Vol.61 (2), p.305-327
issn 0013-0915
1464-3839
language eng
recordid cdi_proquest_journals_2352689068
source Cambridge Journals
subjects Homomorphisms
Realizability
title Free and Properly Discontinuous Actions of Groups on Homotopy 2n-spheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cambr&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20and%20Properly%20Discontinuous%20Actions%20of%20Groups%20on%20Homotopy%202n-spheres&rft.jtitle=Proceedings%20of%20the%20Edinburgh%20Mathematical%20Society&rft.au=Golasi%C5%84ski,%20Marek&rft.date=2018-05&rft.volume=61&rft.issue=2&rft.spage=305&rft.epage=327&rft.pages=305-327&rft.issn=0013-0915&rft.eissn=1464-3839&rft_id=info:doi/10.1017/S0013091517000207&rft_dat=%3Cproquest_cambr%3E2352689068%3C/proquest_cambr%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352689068&rft_id=info:pmid/&rft_cupid=10_1017_S0013091517000207&rfr_iscdi=true