Free and Properly Discontinuous Actions of Groups on Homotopy 2n-spheres

Let G be a group acting freely, properly discontinuously and cellularly on some finite dimensional CW-complex Σ(2n) which has the homotopy type of the 2n-sphere 2n. Then, that action induces a homomorphism G → Aut(H2n(Σ(2n))). We classify all pairs (G, φ), where G is a virtually cyclic group and φ:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2018-05, Vol.61 (2), p.305-327
Hauptverfasser: Golasiński, Marek, Gonçalves, Daciberg Lima, Jimenez, Rolando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a group acting freely, properly discontinuously and cellularly on some finite dimensional CW-complex Σ(2n) which has the homotopy type of the 2n-sphere 2n. Then, that action induces a homomorphism G → Aut(H2n(Σ(2n))). We classify all pairs (G, φ), where G is a virtually cyclic group and φ: G → Aut(ℤ) is a homomorphism, which are realizable in the way above and the homotopy types of all possible orbit spaces as well. Next, we consider the family of all groups which have virtual cohomological dimension one and which act on some Σ(2n). Those groups consist of free groups and semi-direct products F ⋊ ℤ2 with F a free group. For a group G from the family above and a homomorphism φ: G → Aut(ℤ), we present an algebraic criterion equivalent to the realizability of the pair (G, φ). It turns out that any realizable pair can be realized on some Σ(2n) with dim Σ(2n) ≤ 2n + 1.
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091517000207