Fluctuating vector mesons in analytically continued functional RG flow equations

In this work we study contributions due to vector and axial-vector meson fluctuations to their in-medium spectral functions in an effective low-energy theory inspired by the gauged linear sigma model. In particular, we show how to describe these fluctuations in the effective theory by massive (axial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-12, Vol.100 (11), p.1, Article 116009
Hauptverfasser: Jung, Christopher, von Smekal, Lorenz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we study contributions due to vector and axial-vector meson fluctuations to their in-medium spectral functions in an effective low-energy theory inspired by the gauged linear sigma model. In particular, we show how to describe these fluctuations in the effective theory by massive (axial-)vector fields in agreement with the known structure of analogous single-particle or resonance contributions to the corresponding conserved currents. The vector and axial-vector meson spectral functions are then computed by numerically solving the analytically continued functional renormalization group flow equations for their retarded two-point functions at finite temperature and density in the effective theory. We identify the new contributions that arise due to the (axial-)vector meson fluctuations, and assess their influence on possible signatures of a QCD critical end point and the restoration of chiral symmetry in thermal dilepton spectra.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.100.116009