Facile synthesis of highly fluorescent free-standing films comprising graphitic carbon nitride (g-CN) nanolayers

Astounding graphitic carbon nitride (g-C 3 N 4 ) nanostructures have attracted huge attention due to their unique electronic structures, suitable band gap, and thermal and chemical stability, and are insinuating as a promising candidate for photocatalytic and energy harvesting applications. The grow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2020-02, Vol.44 (6), p.2644-2651
Hauptverfasser: Yadav, Ram Manohar, Kumar, Rajesh, Aliyan, Amir, Dobal, Pramod S, Biradar, Santoshkumar, Vajtai, Robert, Singh, Dinesh Pratap, Martí, Angel A, Ajayan, Pulickel M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Astounding graphitic carbon nitride (g-C 3 N 4 ) nanostructures have attracted huge attention due to their unique electronic structures, suitable band gap, and thermal and chemical stability, and are insinuating as a promising candidate for photocatalytic and energy harvesting applications. The growth of a free-standing film is desirable for widespread electronic devices and electrochemical applications. Here, we present a facile approach to prepare free-standing films (15 mm × 10 mm × 0.5 mm) comprising g-C 3 N 4 nanolayers by the pyrolysis of dicyandiamide (C 2 H 4 N 4 ) utilizing the chemical vapor deposition (CVD) technique. The synthesis is done under low-pressure conditions of argon (∼3 Torr) and at a temperature of 600 °C. The as-synthesized g-C 3 N 4 films are systematically studied for their structural/microstructural characterization using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and UV-visible spectroscopy techniques. The excitation-dependent photoluminescence (PL) spectra of the as-synthesized g-C 3 N 4 film exhibited an intense, stable and broad emission peak in the visible region at ∼459 nm. The emission spectra of free-standing g-C 3 N 4 films show a blue shift and band sharpening compared to that of the g-C 3 N 4 powder. The free-standing g-C 3 N 4 films were fabricated by thermal condensation of C 2 H 4 N 4 at 600 °C in a low pressure of Ar atmosphere. The as-synthesized g-C 3 N 4 films exhibited stable and strong photoluminescence emission centered around 455-460 nm.
ISSN:1144-0546
1369-9261
DOI:10.1039/c9nj05108b