Current understanding of the genomic, genetic, and molecular control of insect resistance in rice

Rice ( Oryza sativa ) is both a vital source of food and a key model cereal for genomic research. Insect pests are major factors constraining rice production. Here, we provide an overview of recent progress in functional genomics research and the genetic improvements of insect resistance in rice. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular breeding 2020-02, Vol.40 (2), Article 24
Hauptverfasser: Du, Bo, Chen, Rongzhi, Guo, Jianping, He, Guangcun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rice ( Oryza sativa ) is both a vital source of food and a key model cereal for genomic research. Insect pests are major factors constraining rice production. Here, we provide an overview of recent progress in functional genomics research and the genetic improvements of insect resistance in rice. To date, many insect resistance genes have been identified in rice, and 14 such genes have been cloned via a map-based cloning approach. The proteins encoded by these genes perceive the effectors of insect and activate the defense pathways, including the expression of defense-related genes, including mitogen-activated protein kinase, plant hormone, and transcription factors; and defense mechanism against insects, including callose deposition, trypsin proteinase inhibitors (TryPIs), secondary metabolites, and green leaf volatiles (GLVs). These ongoing functional genomic studies provide insights into the molecular basis of rice–insect interactions and facilitate the development of novel insect-resistant rice varieties, improving long-term control of insect pests in this crucial crop.
ISSN:1380-3743
1572-9788
DOI:10.1007/s11032-020-1103-3