3D segregated architecture BaTiO3/polystyrene composites with enhanced dielectric constant fabricated via hot pressing core–shell polystyrene@BaTiO3 composite microspheres
How to obtain high dielectric constant using low filler content is one of the urgent problems to be solved in the research field of ceramic/polymer dielectric materials. In traditional methods (fillers are randomly distributed), filler particles are isolated by thick layers of polymers (with low die...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2020-02, Vol.31 (4), p.3101-3110 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | How to obtain high dielectric constant using low filler content is one of the urgent problems to be solved in the research field of ceramic/polymer dielectric materials. In traditional methods (fillers are randomly distributed), filler particles are isolated by thick layers of polymers (with low dielectric constant), which usually result in ultra-low enhancement efficiencies of dielectric constant for the composites. To solve the above puzzle, this study provides a new strategy to improve the dielectric constant of ceramic/polymer composites, that is constructing 3D segregated architectures of BaTiO
3
(BT networks) in polystyrene (PS) matrix. This strategy is expected to enhance dielectric interaction between BT particles and greatly improve the dielectric constant of BT/PS composites. In this method, PS@BT core–shell microspheres were firstly fabricated by electrostatic self-assembling the BT particles on PS microspheres. BT/PS composites with BT networks were constructed by hot pressing above core–shell microspheres. Microstructures of PS@BT microspheres and BT/PS composites were investigated. Dielectric properties of BT/PS composites with various BT contents were studied. Results show that dielectric constant of the BT/PS composites is up to 41.8 when BT content is only 30vol%, which is much higher than that of traditional composites. This research provides us a facile method to design and fabricate ceramic/polymer composites with high dielectric constant and low loss. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-020-02856-3 |