Electrical charging overcomes the bouncing barrier in planet formation
In protoplanetary disks, solid objects (so-called planetesimals) are formed from dust. Micrometre-sized dust grains grow into millimetre-sized aggregates. Once those aggregates have diameters exceeding a few centimetres, they become subject to concentration mechanisms such as the streaming instabili...
Gespeichert in:
Veröffentlicht in: | Nature physics 2020-02, Vol.16 (2), p.225-229 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In protoplanetary disks, solid objects (so-called planetesimals) are formed from dust. Micrometre-sized dust grains grow into millimetre-sized aggregates. Once those aggregates have diameters exceeding a few centimetres, they become subject to concentration mechanisms such as the streaming instability, permitting the formation of self-gravitating clusters, which might eventually collapse into kilometre-sized planetesimals. However, for the streaming instability to set in, clumps spanning sizes from centimetres to decimetres are required in the centre of a protoplanetary disk. In the size range between millimetres and centimetres, aggregates bounce off each other rather than sticking together, and growth is stalled. Here we show in microgravity experiments that collisions between millimetre-sized grains lead to sufficient electrical charging for aggregation to bridge this gap between the bouncing barrier and the onset of the streaming instability. We computationally simulate aggregation and find that models agree with the experimental data only if electrical charging is present. We therefore propose that collisional charging may promote early growth in the size gap that current models of planetesimal formation cannot account for.
In our understanding of planetary formation, it is still unclear how millimetre-sized dust grains grow into centimetre-sized aggregates. Microgravity experiments now show that electrical charging of the grains leads to the formation of larger clumps. |
---|---|
ISSN: | 1745-2473 1745-2481 |
DOI: | 10.1038/s41567-019-0728-9 |