Impacts of Holocene and modern sea‐level changes on estuarine mangroves from northeastern Brazil

Projections of the impacts of modern Relative Sea Level (RSL) rise on estuarine mangroves should be supported by coastal topographic data and records of mangrove dynamics under past RSL change. This work identified inland and seaward mangrove migrations along the Jucuruçu River (Bahia, Northeastern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth surface processes and landforms 2020-02, Vol.45 (2), p.375-392
Hauptverfasser: Cohen, Marcelo C.L., Figueiredo, Beatriz L., Oliveira, Nedra N., Fontes, Neuza A., França, Marlon Carlos, Pessenda, Luiz C.R., Souza, Adriana V., Macario, Kita, Giannini, Paulo C.F., Bendassolli, José A., Lima, Paula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 392
container_issue 2
container_start_page 375
container_title Earth surface processes and landforms
container_volume 45
creator Cohen, Marcelo C.L.
Figueiredo, Beatriz L.
Oliveira, Nedra N.
Fontes, Neuza A.
França, Marlon Carlos
Pessenda, Luiz C.R.
Souza, Adriana V.
Macario, Kita
Giannini, Paulo C.F.
Bendassolli, José A.
Lima, Paula
description Projections of the impacts of modern Relative Sea Level (RSL) rise on estuarine mangroves should be supported by coastal topographic data and records of mangrove dynamics under past RSL change. This work identified inland and seaward mangrove migrations along the Jucuruçu River (Bahia, Northeastern Brazil), during the Holocene based on sedimentary features, palynological and geochemical (δ13C, δ15N, C/N) data integrated with digital elevation models. During the Middle Holocene, in response to RSL rise, the estuary saw mangrove forest establish up to ~37 km inland. RSL stood between ‐1.4 (+0.36/‐2.2 m) and +1 (2.19/0.2 m) around 7400 cal yr BP, and rose to a highest position of +3.25 (4.22/2.45 m) reached around 5350 cal yr BP. That marine incursion caused the inland replacement of freshwater vegetation by mangroves on tidal flats. Since then, the estuary experienced RSL fall, reducing inland tidal water salinity towards the Late Holocene, making that the mangroves were replaced by freshwater floodplain vegetation. Today, in the seaward part of the estuary near its mouth, mangroves occupy an area of ~10 km2 along tidal channels. Considering a RSL rise of 98 cm up to the end of the 21st century, at a rate significantly higher than that of Middle Holocene RSL rise (1.5 mm/yr) and fall (0.6 mm/yr), the current mangrove substrates are expected to drown and/or eroded near the coast, while new mangroves may establish inland, at topographically higher tidal flats in nowadays freshwater‐tidal zones. Mangrove area could expand over 13 km2 of coastal and flood plain. Following the same interaction between RSL/climate changes and Holocene mangrove dynamics, such upstream mangrove migration may be attenuated or intensified by changes in fluvial discharge. © 2019 John Wiley & Sons, Ltd. Model of vegetation development according to climate and relative sea‐level changes
doi_str_mv 10.1002/esp.4737
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2351959661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2351959661</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3167-9e0b654403c859510907b35c85b2439ab72d73210ec6492ba4cac4b8d084af963</originalsourceid><addsrcrecordid>eNp10MFKwzAYB_AgCs4p-AgBL146kyZNmqMOdYOBgnoOafrVdbRNTbrJPPkIPqNPYua8egr5-H3Jnz9C55RMKCHpFYR-wiWTB2hEiRKJypk8RCNClUwUY_IYnYSwIoRSnqsRKuZtb-wQsKvwzDXOQgfYdCVuXQm-wwHM9-dXAxtosF2a7hUi7TCEYW18HW0bZ95t4rjyrsWd88MSTBh2yzfefNTNKTqqTBPg7O8co5e72-fpLFk83M-n14vEMCpiOCCFyDgnzOaZymJ4IguWxUuRcqZMIdNSspQSsIKrtDDcGsuLvCQ5N5USbIwu9u_23r2tY0K9cmvfxS91yjKqMiUEjepyr6x3IXiodO_r1vitpkTvGtSxQb1rMNJkT9_rBrb_On379PjrfwDfO3L7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2351959661</pqid></control><display><type>article</type><title>Impacts of Holocene and modern sea‐level changes on estuarine mangroves from northeastern Brazil</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cohen, Marcelo C.L. ; Figueiredo, Beatriz L. ; Oliveira, Nedra N. ; Fontes, Neuza A. ; França, Marlon Carlos ; Pessenda, Luiz C.R. ; Souza, Adriana V. ; Macario, Kita ; Giannini, Paulo C.F. ; Bendassolli, José A. ; Lima, Paula</creator><creatorcontrib>Cohen, Marcelo C.L. ; Figueiredo, Beatriz L. ; Oliveira, Nedra N. ; Fontes, Neuza A. ; França, Marlon Carlos ; Pessenda, Luiz C.R. ; Souza, Adriana V. ; Macario, Kita ; Giannini, Paulo C.F. ; Bendassolli, José A. ; Lima, Paula</creatorcontrib><description>Projections of the impacts of modern Relative Sea Level (RSL) rise on estuarine mangroves should be supported by coastal topographic data and records of mangrove dynamics under past RSL change. This work identified inland and seaward mangrove migrations along the Jucuruçu River (Bahia, Northeastern Brazil), during the Holocene based on sedimentary features, palynological and geochemical (δ13C, δ15N, C/N) data integrated with digital elevation models. During the Middle Holocene, in response to RSL rise, the estuary saw mangrove forest establish up to ~37 km inland. RSL stood between ‐1.4 (+0.36/‐2.2 m) and +1 (2.19/0.2 m) around 7400 cal yr BP, and rose to a highest position of +3.25 (4.22/2.45 m) reached around 5350 cal yr BP. That marine incursion caused the inland replacement of freshwater vegetation by mangroves on tidal flats. Since then, the estuary experienced RSL fall, reducing inland tidal water salinity towards the Late Holocene, making that the mangroves were replaced by freshwater floodplain vegetation. Today, in the seaward part of the estuary near its mouth, mangroves occupy an area of ~10 km2 along tidal channels. Considering a RSL rise of 98 cm up to the end of the 21st century, at a rate significantly higher than that of Middle Holocene RSL rise (1.5 mm/yr) and fall (0.6 mm/yr), the current mangrove substrates are expected to drown and/or eroded near the coast, while new mangroves may establish inland, at topographically higher tidal flats in nowadays freshwater‐tidal zones. Mangrove area could expand over 13 km2 of coastal and flood plain. Following the same interaction between RSL/climate changes and Holocene mangrove dynamics, such upstream mangrove migration may be attenuated or intensified by changes in fluvial discharge. © 2019 John Wiley &amp; Sons, Ltd. Model of vegetation development according to climate and relative sea‐level changes</description><identifier>ISSN: 0197-9337</identifier><identifier>EISSN: 1096-9837</identifier><identifier>DOI: 10.1002/esp.4737</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Brackishwater environment ; Climate change ; climate changes ; Coastal erosion ; Coastal flooding ; Coastal plains ; Digital Elevation Models ; drone ; Dynamics ; Estuaries ; Estuarine dynamics ; Floodplains ; Freshwater ; Holocene ; Inland water environment ; Mangrove swamps ; Mangroves ; Palynology ; Rivers ; satellite images ; Sea level ; Sea level rise ; Substrates ; Tidal flats ; Tidal inlets ; Tidewater ; Vegetation ; Water salinity</subject><ispartof>Earth surface processes and landforms, 2020-02, Vol.45 (2), p.375-392</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3167-9e0b654403c859510907b35c85b2439ab72d73210ec6492ba4cac4b8d084af963</citedby><cites>FETCH-LOGICAL-a3167-9e0b654403c859510907b35c85b2439ab72d73210ec6492ba4cac4b8d084af963</cites><orcidid>0000-0001-9892-4719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fesp.4737$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fesp.4737$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Cohen, Marcelo C.L.</creatorcontrib><creatorcontrib>Figueiredo, Beatriz L.</creatorcontrib><creatorcontrib>Oliveira, Nedra N.</creatorcontrib><creatorcontrib>Fontes, Neuza A.</creatorcontrib><creatorcontrib>França, Marlon Carlos</creatorcontrib><creatorcontrib>Pessenda, Luiz C.R.</creatorcontrib><creatorcontrib>Souza, Adriana V.</creatorcontrib><creatorcontrib>Macario, Kita</creatorcontrib><creatorcontrib>Giannini, Paulo C.F.</creatorcontrib><creatorcontrib>Bendassolli, José A.</creatorcontrib><creatorcontrib>Lima, Paula</creatorcontrib><title>Impacts of Holocene and modern sea‐level changes on estuarine mangroves from northeastern Brazil</title><title>Earth surface processes and landforms</title><description>Projections of the impacts of modern Relative Sea Level (RSL) rise on estuarine mangroves should be supported by coastal topographic data and records of mangrove dynamics under past RSL change. This work identified inland and seaward mangrove migrations along the Jucuruçu River (Bahia, Northeastern Brazil), during the Holocene based on sedimentary features, palynological and geochemical (δ13C, δ15N, C/N) data integrated with digital elevation models. During the Middle Holocene, in response to RSL rise, the estuary saw mangrove forest establish up to ~37 km inland. RSL stood between ‐1.4 (+0.36/‐2.2 m) and +1 (2.19/0.2 m) around 7400 cal yr BP, and rose to a highest position of +3.25 (4.22/2.45 m) reached around 5350 cal yr BP. That marine incursion caused the inland replacement of freshwater vegetation by mangroves on tidal flats. Since then, the estuary experienced RSL fall, reducing inland tidal water salinity towards the Late Holocene, making that the mangroves were replaced by freshwater floodplain vegetation. Today, in the seaward part of the estuary near its mouth, mangroves occupy an area of ~10 km2 along tidal channels. Considering a RSL rise of 98 cm up to the end of the 21st century, at a rate significantly higher than that of Middle Holocene RSL rise (1.5 mm/yr) and fall (0.6 mm/yr), the current mangrove substrates are expected to drown and/or eroded near the coast, while new mangroves may establish inland, at topographically higher tidal flats in nowadays freshwater‐tidal zones. Mangrove area could expand over 13 km2 of coastal and flood plain. Following the same interaction between RSL/climate changes and Holocene mangrove dynamics, such upstream mangrove migration may be attenuated or intensified by changes in fluvial discharge. © 2019 John Wiley &amp; Sons, Ltd. Model of vegetation development according to climate and relative sea‐level changes</description><subject>Brackishwater environment</subject><subject>Climate change</subject><subject>climate changes</subject><subject>Coastal erosion</subject><subject>Coastal flooding</subject><subject>Coastal plains</subject><subject>Digital Elevation Models</subject><subject>drone</subject><subject>Dynamics</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Floodplains</subject><subject>Freshwater</subject><subject>Holocene</subject><subject>Inland water environment</subject><subject>Mangrove swamps</subject><subject>Mangroves</subject><subject>Palynology</subject><subject>Rivers</subject><subject>satellite images</subject><subject>Sea level</subject><subject>Sea level rise</subject><subject>Substrates</subject><subject>Tidal flats</subject><subject>Tidal inlets</subject><subject>Tidewater</subject><subject>Vegetation</subject><subject>Water salinity</subject><issn>0197-9337</issn><issn>1096-9837</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10MFKwzAYB_AgCs4p-AgBL146kyZNmqMOdYOBgnoOafrVdbRNTbrJPPkIPqNPYua8egr5-H3Jnz9C55RMKCHpFYR-wiWTB2hEiRKJypk8RCNClUwUY_IYnYSwIoRSnqsRKuZtb-wQsKvwzDXOQgfYdCVuXQm-wwHM9-dXAxtosF2a7hUi7TCEYW18HW0bZ95t4rjyrsWd88MSTBh2yzfefNTNKTqqTBPg7O8co5e72-fpLFk83M-n14vEMCpiOCCFyDgnzOaZymJ4IguWxUuRcqZMIdNSspQSsIKrtDDcGsuLvCQ5N5USbIwu9u_23r2tY0K9cmvfxS91yjKqMiUEjepyr6x3IXiodO_r1vitpkTvGtSxQb1rMNJkT9_rBrb_On379PjrfwDfO3L7</recordid><startdate>202002</startdate><enddate>202002</enddate><creator>Cohen, Marcelo C.L.</creator><creator>Figueiredo, Beatriz L.</creator><creator>Oliveira, Nedra N.</creator><creator>Fontes, Neuza A.</creator><creator>França, Marlon Carlos</creator><creator>Pessenda, Luiz C.R.</creator><creator>Souza, Adriana V.</creator><creator>Macario, Kita</creator><creator>Giannini, Paulo C.F.</creator><creator>Bendassolli, José A.</creator><creator>Lima, Paula</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-9892-4719</orcidid></search><sort><creationdate>202002</creationdate><title>Impacts of Holocene and modern sea‐level changes on estuarine mangroves from northeastern Brazil</title><author>Cohen, Marcelo C.L. ; Figueiredo, Beatriz L. ; Oliveira, Nedra N. ; Fontes, Neuza A. ; França, Marlon Carlos ; Pessenda, Luiz C.R. ; Souza, Adriana V. ; Macario, Kita ; Giannini, Paulo C.F. ; Bendassolli, José A. ; Lima, Paula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3167-9e0b654403c859510907b35c85b2439ab72d73210ec6492ba4cac4b8d084af963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brackishwater environment</topic><topic>Climate change</topic><topic>climate changes</topic><topic>Coastal erosion</topic><topic>Coastal flooding</topic><topic>Coastal plains</topic><topic>Digital Elevation Models</topic><topic>drone</topic><topic>Dynamics</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Floodplains</topic><topic>Freshwater</topic><topic>Holocene</topic><topic>Inland water environment</topic><topic>Mangrove swamps</topic><topic>Mangroves</topic><topic>Palynology</topic><topic>Rivers</topic><topic>satellite images</topic><topic>Sea level</topic><topic>Sea level rise</topic><topic>Substrates</topic><topic>Tidal flats</topic><topic>Tidal inlets</topic><topic>Tidewater</topic><topic>Vegetation</topic><topic>Water salinity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Marcelo C.L.</creatorcontrib><creatorcontrib>Figueiredo, Beatriz L.</creatorcontrib><creatorcontrib>Oliveira, Nedra N.</creatorcontrib><creatorcontrib>Fontes, Neuza A.</creatorcontrib><creatorcontrib>França, Marlon Carlos</creatorcontrib><creatorcontrib>Pessenda, Luiz C.R.</creatorcontrib><creatorcontrib>Souza, Adriana V.</creatorcontrib><creatorcontrib>Macario, Kita</creatorcontrib><creatorcontrib>Giannini, Paulo C.F.</creatorcontrib><creatorcontrib>Bendassolli, José A.</creatorcontrib><creatorcontrib>Lima, Paula</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Earth surface processes and landforms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Marcelo C.L.</au><au>Figueiredo, Beatriz L.</au><au>Oliveira, Nedra N.</au><au>Fontes, Neuza A.</au><au>França, Marlon Carlos</au><au>Pessenda, Luiz C.R.</au><au>Souza, Adriana V.</au><au>Macario, Kita</au><au>Giannini, Paulo C.F.</au><au>Bendassolli, José A.</au><au>Lima, Paula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impacts of Holocene and modern sea‐level changes on estuarine mangroves from northeastern Brazil</atitle><jtitle>Earth surface processes and landforms</jtitle><date>2020-02</date><risdate>2020</risdate><volume>45</volume><issue>2</issue><spage>375</spage><epage>392</epage><pages>375-392</pages><issn>0197-9337</issn><eissn>1096-9837</eissn><abstract>Projections of the impacts of modern Relative Sea Level (RSL) rise on estuarine mangroves should be supported by coastal topographic data and records of mangrove dynamics under past RSL change. This work identified inland and seaward mangrove migrations along the Jucuruçu River (Bahia, Northeastern Brazil), during the Holocene based on sedimentary features, palynological and geochemical (δ13C, δ15N, C/N) data integrated with digital elevation models. During the Middle Holocene, in response to RSL rise, the estuary saw mangrove forest establish up to ~37 km inland. RSL stood between ‐1.4 (+0.36/‐2.2 m) and +1 (2.19/0.2 m) around 7400 cal yr BP, and rose to a highest position of +3.25 (4.22/2.45 m) reached around 5350 cal yr BP. That marine incursion caused the inland replacement of freshwater vegetation by mangroves on tidal flats. Since then, the estuary experienced RSL fall, reducing inland tidal water salinity towards the Late Holocene, making that the mangroves were replaced by freshwater floodplain vegetation. Today, in the seaward part of the estuary near its mouth, mangroves occupy an area of ~10 km2 along tidal channels. Considering a RSL rise of 98 cm up to the end of the 21st century, at a rate significantly higher than that of Middle Holocene RSL rise (1.5 mm/yr) and fall (0.6 mm/yr), the current mangrove substrates are expected to drown and/or eroded near the coast, while new mangroves may establish inland, at topographically higher tidal flats in nowadays freshwater‐tidal zones. Mangrove area could expand over 13 km2 of coastal and flood plain. Following the same interaction between RSL/climate changes and Holocene mangrove dynamics, such upstream mangrove migration may be attenuated or intensified by changes in fluvial discharge. © 2019 John Wiley &amp; Sons, Ltd. Model of vegetation development according to climate and relative sea‐level changes</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/esp.4737</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9892-4719</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0197-9337
ispartof Earth surface processes and landforms, 2020-02, Vol.45 (2), p.375-392
issn 0197-9337
1096-9837
language eng
recordid cdi_proquest_journals_2351959661
source Wiley Online Library Journals Frontfile Complete
subjects Brackishwater environment
Climate change
climate changes
Coastal erosion
Coastal flooding
Coastal plains
Digital Elevation Models
drone
Dynamics
Estuaries
Estuarine dynamics
Floodplains
Freshwater
Holocene
Inland water environment
Mangrove swamps
Mangroves
Palynology
Rivers
satellite images
Sea level
Sea level rise
Substrates
Tidal flats
Tidal inlets
Tidewater
Vegetation
Water salinity
title Impacts of Holocene and modern sea‐level changes on estuarine mangroves from northeastern Brazil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impacts%20of%20Holocene%20and%20modern%20sea%E2%80%90level%20changes%20on%20estuarine%20mangroves%20from%20northeastern%20Brazil&rft.jtitle=Earth%20surface%20processes%20and%20landforms&rft.au=Cohen,%20Marcelo%20C.L.&rft.date=2020-02&rft.volume=45&rft.issue=2&rft.spage=375&rft.epage=392&rft.pages=375-392&rft.issn=0197-9337&rft.eissn=1096-9837&rft_id=info:doi/10.1002/esp.4737&rft_dat=%3Cproquest_cross%3E2351959661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2351959661&rft_id=info:pmid/&rfr_iscdi=true