Impacts of Holocene and modern sea‐level changes on estuarine mangroves from northeastern Brazil

Projections of the impacts of modern Relative Sea Level (RSL) rise on estuarine mangroves should be supported by coastal topographic data and records of mangrove dynamics under past RSL change. This work identified inland and seaward mangrove migrations along the Jucuruçu River (Bahia, Northeastern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth surface processes and landforms 2020-02, Vol.45 (2), p.375-392
Hauptverfasser: Cohen, Marcelo C.L., Figueiredo, Beatriz L., Oliveira, Nedra N., Fontes, Neuza A., França, Marlon Carlos, Pessenda, Luiz C.R., Souza, Adriana V., Macario, Kita, Giannini, Paulo C.F., Bendassolli, José A., Lima, Paula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Projections of the impacts of modern Relative Sea Level (RSL) rise on estuarine mangroves should be supported by coastal topographic data and records of mangrove dynamics under past RSL change. This work identified inland and seaward mangrove migrations along the Jucuruçu River (Bahia, Northeastern Brazil), during the Holocene based on sedimentary features, palynological and geochemical (δ13C, δ15N, C/N) data integrated with digital elevation models. During the Middle Holocene, in response to RSL rise, the estuary saw mangrove forest establish up to ~37 km inland. RSL stood between ‐1.4 (+0.36/‐2.2 m) and +1 (2.19/0.2 m) around 7400 cal yr BP, and rose to a highest position of +3.25 (4.22/2.45 m) reached around 5350 cal yr BP. That marine incursion caused the inland replacement of freshwater vegetation by mangroves on tidal flats. Since then, the estuary experienced RSL fall, reducing inland tidal water salinity towards the Late Holocene, making that the mangroves were replaced by freshwater floodplain vegetation. Today, in the seaward part of the estuary near its mouth, mangroves occupy an area of ~10 km2 along tidal channels. Considering a RSL rise of 98 cm up to the end of the 21st century, at a rate significantly higher than that of Middle Holocene RSL rise (1.5 mm/yr) and fall (0.6 mm/yr), the current mangrove substrates are expected to drown and/or eroded near the coast, while new mangroves may establish inland, at topographically higher tidal flats in nowadays freshwater‐tidal zones. Mangrove area could expand over 13 km2 of coastal and flood plain. Following the same interaction between RSL/climate changes and Holocene mangrove dynamics, such upstream mangrove migration may be attenuated or intensified by changes in fluvial discharge. © 2019 John Wiley & Sons, Ltd. Model of vegetation development according to climate and relative sea‐level changes
ISSN:0197-9337
1096-9837
DOI:10.1002/esp.4737