Pruning operator for minimum deck wind in carrier aircraft launch

Launch resources and flight safety are important for carrier-based aircraft to takeoff. Aimed at making full use of marine wind resources, a pruning operator added to linear random search algorithm is developed to solve the minimum deck wind for carrier aircraft launch. On the basis of problem state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2020-03, Vol.234 (3), p.655-664
Hauptverfasser: Zhou, Zeyang, Huang, Jun, Yi, Mingxu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Launch resources and flight safety are important for carrier-based aircraft to takeoff. Aimed at making full use of marine wind resources, a pruning operator added to linear random search algorithm is developed to solve the minimum deck wind for carrier aircraft launch. On the basis of problem statement, the catapult safety criteria are quantified as the boundary condition of the critical solution. Then the mathematical model is established for the algorithm including pruning schematic. The influence of deck wind on aircraft catapult launch is analyzed. With the algorithm proceeding and the feedback results of aircraft catapult launch simulation, the optimal solution of the minimum deck wind is determined in a few simulation times. The main contribution of this research is the development of the pruning operator to greatly shorten the search times under permissible error for the discrete linear problems. And the minimum deck wind is solved in full takeoff weight range due to combining linear random search algorithm and simulation.
ISSN:0954-4100
2041-3025
DOI:10.1177/0954410019877715