3D point cloud registration denoising method for human motion image using deep learning algorithm
Aiming at the problem of 3D point cloud noise affecting the efficiency and precision of human body 3D reconstruction in complex scenes, a 3D point cloud registration denoising method for human motion image using depth learning algorithm is proposed. First, two Kinect sensors are used to collect the...
Gespeichert in:
Veröffentlicht in: | Multimedia systems 2020-02, Vol.26 (1), p.75-82 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aiming at the problem of 3D point cloud noise affecting the efficiency and precision of human body 3D reconstruction in complex scenes, a 3D point cloud registration denoising method for human motion image using depth learning algorithm is proposed. First, two Kinect sensors are used to collect the three-dimensional data of the human body in the scene, and the spatial alignment under the Bursa linear model is used to pre-process the background point cloud data. The depth image of the point cloud is calculated, and the depth image pair is extracted by the convolutional neural network. Furthermore, the feature difference of the depth image pair is taken as the input of the fully connected network and the point cloud registration parameter is calculated, and the above operation is performed iteratively until the registration error is less than the acceptable threshold. Then, the improved C-means algorithm is used to remove the outlier, the noise is clustered, and the large-scale outlier noise is removed. Finally, the high-frequency information is processed by the depth data bilateral filtering method. The experimental results show that compared with the traditional bilateral filtering algorithm and fuzzy C-means algorithm, the proposed method can effectively remove noise of different scales and maintain good performance on the basis of maintaining human body features. In the point cloud model of A, B, and C, the average error of the proposed method is lower than that of the traditional bilateral filtering algorithm with 15.7%, 15.9%, and 19.8%, respectively, and it is lower than that of the fuzzy C-means algorithm with 25.8%, 26.9%, and 30.2%, respectively. |
---|---|
ISSN: | 0942-4962 1432-1882 |
DOI: | 10.1007/s00530-019-00630-y |