p-angular distance orthogonality

We present a new orthogonality which is based on p -angular distance in normed linear spaces. This orthogonality generalizes the Singer and isosceles orthogonalities to a vast extent. Some important properties of this orthogonality, such as the α -existence and the α -diagonal existence, are establi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aequationes mathematicae 2020-02, Vol.94 (1), p.103-121
Hauptverfasser: Rooin, J., Rajabi, S., Moslehian, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new orthogonality which is based on p -angular distance in normed linear spaces. This orthogonality generalizes the Singer and isosceles orthogonalities to a vast extent. Some important properties of this orthogonality, such as the α -existence and the α -diagonal existence, are established with giving some natural bounds for α . It is shown that a real normed linear space is an inner product space if and only if the p -angular distance orthogonality is either homogeneous or additive. Several examples are presented to illustrate the results.
ISSN:0001-9054
1420-8903
DOI:10.1007/s00010-019-00664-7