Immobilization of AgCl@TiO2 on the woven wire mesh: Sunlight-responsive environmental photocatalyst with high durability

•Improvement of photocatalytic activity of AgCl incorporation in TiO2.•Immobilization of photocatalyst on woven stainless steel wire mesh for degradation of methamphetamine.•Best photodegradation efficiency was achieved in film thickness of 1629 nm.•Enhancement of photocurrent density of AgCl@TiO2 i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2020-01, Vol.196, p.653-662
Hauptverfasser: Azizi-Toupkanloo, Hossein, Karimi-Nazarabad, Mahdi, Amini, Gholam-Reza, Darroudi, Abolfazl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Improvement of photocatalytic activity of AgCl incorporation in TiO2.•Immobilization of photocatalyst on woven stainless steel wire mesh for degradation of methamphetamine.•Best photodegradation efficiency was achieved in film thickness of 1629 nm.•Enhancement of photocurrent density of AgCl@TiO2 is 2.1 time greater than TiO2. The immobilized AgCl@TiO2 photocatalytic thin films were fabricated via electrophoretic deposition method. Affordability, scalability, and high chemical stability are some valuable characteristics making woven stainless steel wire mesh a suitable substrate for fabrication of photocatalyst film. The photocatalytic degradation efficiency of the thin film was investigated by removing hard-degradable methamphetamine under natural solar light. The AgCl@TiO2 photocatalyst with AgCl content of about 5% showed the most photocatalytic degradation efficiency. Using Mott-Schottky plots, the flat band potential of prepared photocatalysts was estimated. The flat band potential showed that the conduction band of AgCl@TiO2 is a better candidate for production of superoxide radicals than TiO2. A film thickness of 1629 nm yields optimal photodegradation efficiency. A series of ten sequential cycles for photodegradation of methamphetamine was conducted using thin film which caused neither significant destruction on photocatalytic substrate nor any considerable reduction in efficiency whatsoever. The AgCl@TiO2 thin film-induced mineralization of methamphetamine was reported to be approximately around 91 percent. The photoelectrochemical performance of TiO2 and AgCl@TiO2 thin film was evaluated by LSV technique under solar light and results show thatafter incorporation of AgCl, the photocurrent density corresponding to the oxygen evolution reaction significantly increased to 1.8 mA cm−2 at 1.23 V vs RHE.
ISSN:0038-092X
1471-1257
DOI:10.1016/j.solener.2019.12.046