Diagnostic module for series-connected photovoltaic panels

•Online monitoring module based on differential power processing principles.•Data acquisition of dynamic I-V characteristic of a solar panel in milliseconds.•Intrinsic parameter estimation using evolutionary algorithms.•Fault detection based on deviations in estimated intrinsic parameters. An online...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2020-01, Vol.196, p.243-259
Hauptverfasser: Garaj, Martin, Hong, Kelvin Yiwen, Chung, Henry Shu-Hung, Lo, Alan Wai-lun, Wang, Huai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Online monitoring module based on differential power processing principles.•Data acquisition of dynamic I-V characteristic of a solar panel in milliseconds.•Intrinsic parameter estimation using evolutionary algorithms.•Fault detection based on deviations in estimated intrinsic parameters. An online diagnostic module for condition monitoring of two series-connected photovoltaic panels is presented. The technique is based on firstly perturbing the terminal voltages and currents of the panels with a switched-inductor circuit, which can also be used for differential power processing, to obtain the large-signal dynamic current-voltage characteristics of the panels. An evolutionary algorithm is used to estimate the intrinsic parameters of the panels from the time series of the sampled panel current and voltage. The conditions of the panels are monitored by observing the long-term changes in the extracted intrinsic parameters. Prototype data acquisition module for studying the conditions of solar panels of different technologies (amorphous and crystalline silicon) with different degrees of damage has been built and evaluated. Results reveal that the estimated intrinsic parameters from large-signal dynamic characteristic correlate with the observed health status of the tested panels. Theoretical predictions are favorably compared with experimental measurements.
ISSN:0038-092X
1471-1257
DOI:10.1016/j.solener.2019.12.019