Effect of preload on the dynamic characteristics of ceramic bearings based on a dynamic thermal coupling model

Ceramic bearings have a good dynamic output performance under an ultra-high, ultra-low temperature due to their small deformation property. Based on the Harris and Palmgren empirical equation, this article establishes the thermal transfer model of a ceramic motorized spindle. The thermal deformation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mechanical engineering 2020-01, Vol.12 (1), Article 1687814020903851
Hauptverfasser: Zhang, Ke, Wang, Zinan, Bai, Xiaotian, Shi, Huaitao, Wang, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ceramic bearings have a good dynamic output performance under an ultra-high, ultra-low temperature due to their small deformation property. Based on the Harris and Palmgren empirical equation, this article establishes the thermal transfer model of a ceramic motorized spindle. The thermal deformation of a ceramic angular contact ball bearing is calculated. A dynamic and thermal coupling model of the ceramic motorized spindle is built using the Hertz contact theory, which can determine the optimal preload force under different rotating speed conditions. The influence of different temperatures, preload, and rotation speeds on the bearing vibration characteristics was studied. The accuracy of the dynamic and thermal coupling model was verified by the motorized spindle experimental platform. The results show that the thermal deformation of the bearing is an important influencing factor for the output of the dynamic characteristics. Considering the thermal displacement of the bearing, the simulation accuracy of the ceramic motorized spindle-bearing system is in good agreement with the experimental results. By adjusting the bearing preload, the parameters of the rotating speed can effectively reduce the temperature rise and suppress the vibration. The spindle-bearing system model provides a theoretical basis for the dynamic development of a high-speed ceramic bearing.
ISSN:1687-8132
1687-8140
DOI:10.1177/1687814020903851