3D Cube‐Maze‐Like Li‐Rich Layered Cathodes Assembled from 2D Porous Nanosheets for Enhanced Cycle Stability and Rate Capability of Lithium‐Ion Batteries
Li‐rich oxide is a promising candidate for the cathodes of next‐generation lithium‐ion batteries. However, its utilization is restricted by cycling instability and inferior rate capability. To tackle these issues, three‐dimensional (3D), hierarchical, cube‐maze‐like Li‐rich cathodes assembled from t...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2020-02, Vol.10 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Li‐rich oxide is a promising candidate for the cathodes of next‐generation lithium‐ion batteries. However, its utilization is restricted by cycling instability and inferior rate capability. To tackle these issues, three‐dimensional (3D), hierarchical, cube‐maze‐like Li‐rich cathodes assembled from two‐dimensional (2D), thin nanosheets with exposed {010} active planes, are developed by a facile hydrothermal approach. Benefiting from their unique architecture, 3D cube‐maze‐like cathodes demonstrate a superior reversible capacity (285.3 mAh g−1 at 0.1 C, 133.4 mAh g−1 at 20.0 C) and a great cycle stability (capacity retention of 87.4% after 400 cycles at 2.0 C, 85.2% after 600 cycles and 75.0% after 1200 cycles at 20.0 C). When this material is matched with a graphite anode, the full cell achieves a remarkable discharge capacity (275.2 mAh g−1 at 0.1 C) and stable cycling behavior (capacity retention of 88.7% after 100 cycles at 5.0 C, capacity retention of 84.8% after 100 cycles at 20.0 C). The present work proposes an accessible way to construct 3D hierarchical architecture assembled from 2D nanosheets with exposed high‐energy active {010} planes and verifies its validity for advanced Li‐rich cathodes.
A facile approach to construct three‐dimensional cube‐maze‐like hierarchical architecture assembled from two‐dimensional nanosheets with exposed high‐energy active {010} planes is reported and its validity for advanced Li‐rich cathodes in terms of reversible capacity, cycle stability, and rate capability is verified. |
---|---|
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.201903139 |