Elevated atmospheric CO[sub]2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L

This study investigated the interaction of NaCl-salinity and elevated atmospheric CO[sub]2 concentration on gas exchange, leaf pigment composition, and leaf ultrastructure of the potential cash crop halophyte Aster tripolium. The plants were irrigated with five different salinity levels (0, 25, 50,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2009-01, Vol.60 (1), p.137
Hauptverfasser: Geissler, Nicole, Hussin, Sayed, Hans-werner Koyro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the interaction of NaCl-salinity and elevated atmospheric CO[sub]2 concentration on gas exchange, leaf pigment composition, and leaf ultrastructure of the potential cash crop halophyte Aster tripolium. The plants were irrigated with five different salinity levels (0, 25, 50, 75, 100% seawater salinity) under ambient and elevated (520 ppm) CO[sub]2. Under saline conditions (ambient CO[sub]2) stomatal and mesophyll resistance increased, leading to a significant decrease in photosynthesis and water use efficiency (WUE) and to an increase in oxidative stress. The latter was indicated by dilations of the thylakoid membranes and an increase in superoxide dismutase (SOD) activity. Oxidative stress could be counteracted by thicker epidermal cell walls of the leaves, a thicker cuticle, a reduced chlorophyll content, an increase in the chlorophyll a/b ratio and a transient decline of the photosynthetic efficiency. Elevated CO[sub]2 led to a significant increase in photosynthesis and WUE. The improved water and energy supply was used to increase the investment in mechanisms reducing water loss and oxidative stress (thicker cell walls and cuticles, a higher chlorophyll and carotenoid content, higher SOD activity), resulting in more intact thylakoids. As these mechanisms can improve survival under salinity, A. tripolium seems to be a promising cash crop halophyte which can help in desalinizing and reclaiming degraded land.
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/ern271