On the endpoint behaviour of oscillatory maximal function
Inspired by a question of Lie, we study boundedness in subspaces of \(L^1(\mathbb{R})\) of oscillatory maximal functions. In particular, we construct functions in \(L^1(\mathbb{R})\) which are never integrable under action of our class of maximal functions. On the other hand, we prove that these max...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inspired by a question of Lie, we study boundedness in subspaces of \(L^1(\mathbb{R})\) of oscillatory maximal functions. In particular, we construct functions in \(L^1(\mathbb{R})\) which are never integrable under action of our class of maximal functions. On the other hand, we prove that these maximal functions map certain classes of spaces resembling Sobolev spaces into \(L^1(\mathbb{R})\) continuously under mild curvature assumptions on the phase \(\gamma\). |
---|---|
ISSN: | 2331-8422 |