Predicted versus measured photosynthetic water-use efficiency of crop stands under dynamically changing field environments This paper is an expansion with much additional material of a preliminary report appearing in 2000 in Acta Horticulturae 537, 199-206
Water-use efficiency (WUE) is critical in determining the adaptation and productivity of plants in water-limited areas, either under the present climate or future global change. Data on WUE are often highly variable and a unifying and quantitative approach is needed to analyse and predict WUE for di...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2004-11, Vol.55 (407), p.2395 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Water-use efficiency (WUE) is critical in determining the adaptation and productivity of plants in water-limited areas, either under the present climate or future global change. Data on WUE are often highly variable and a unifying and quantitative approach is needed to analyse and predict WUE for different environments. Hsiao has already proposed a set of paradigm equations based on leaf gas exchange for this purpose, calculating WUE (ratio of assimilation to transpiration) relative to the WUE for a chosen reference situation. This study tests the validity and applicability of these equations to cotton and sweet corn stands with full canopies in the open field. Measured were evapotranspiration and downward flux of atmospheric CO2 into the canopy, soil CO2 efflux, canopy temperature, and CO2 and vapour pressure of the air surrounding the canopy. With the measured mean WUE and conditions at midday serving as the reference, WUE for other times was predicted from the air CO2 and water vapour data, intercellular water vapour pressure calculated from canopy temperature, and an assumed ratio of Ci/Ca based on leaf gas-exchange data. Provided that the stomatal response to humidity as it affected the Ci/Ca ratio was accounted for, the equations predicted the moment-by-moment changes in canopy WUE of cotton over daily cycles reasonably well, and also the variation in midday WUE from day-to-day over a 47 d period. The prediction for sweet corn was fairly good for most parts of the day except the early morning. Measurement uncertainties and possible causes of the differences between predicted and measured WUE are discussed. Overall, the results indicate that the equations may be suitable to simulate changes in WUE without upscaling, and also demonstrate clearly the importance of stomatal response to humidity in determining stand WUE in the field. |
---|---|
ISSN: | 0022-0957 1460-2431 |