Register-Transfer-Level Features for Machine-Learning-Based Hardware Trojan Detection

Register-transfer-level (RTL) information is hardly available for hardware Trojan detection. In this paper, four RTL Trojan features related to branching statement are proposed. The Minimum Redundancy Maximum Relevance (mRMR) feature selection is applied to the proposed Trojan features to determine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2020/02/01, Vol.E103.A(2), pp.502-509
Hauptverfasser: CHOO, Hau Sim, OOI, Chia Yee, INOUE, Michiko, ISMAIL, Nordinah, MOGHBEL, Mehrdad, KOK, Chee Hoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Register-transfer-level (RTL) information is hardly available for hardware Trojan detection. In this paper, four RTL Trojan features related to branching statement are proposed. The Minimum Redundancy Maximum Relevance (mRMR) feature selection is applied to the proposed Trojan features to determine the recommended feature combinations. The feature combinations are then tested using different machine learning concepts in order to determine the best approach for classifying Trojan and normal branches. The result shows that a Decision Tree classification algorithm with all the four proposed Trojan features can achieve an average true positive detection rate of 93.72% on unseen test data.
ISSN:0916-8508
1745-1337
DOI:10.1587/transfun.2019EAP1044