Design of Main Circuit for an SiC-MOSFET Inverter Using a Thick Copper Multilayer PCB to Minimize Stray Inductance

Inverters using SiC or GaN power devices can achieve high frequency and high efficiency operation. To achieve high efficiency, the switching characteristics of these power devices are important because stray inductances in the main circuit of the inverter have a strong influence on the switching cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki Gakkai ronbunshi. D, Sangyō ōyō bumonshi 2020/02/01, Vol.140(2), pp.89-98
Hauptverfasser: Ishikawa, Kohsuke, Ogasawara, Satoshi, Takemoto, Masatsugu, Orikawa, Koji
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inverters using SiC or GaN power devices can achieve high frequency and high efficiency operation. To achieve high efficiency, the switching characteristics of these power devices are important because stray inductances in the main circuit of the inverter have a strong influence on the switching characteristics. To reduce switching loss and surge voltage, minimization of stray inductance in the main circuit is required for a high-frequency PWM inverter. This paper describes design guidelines for high-frequency inverters that achieve low inductance. The PCB design guideline on a thick multilayer PCB is derived from the inductance calculation using 3D-FEA. It is shown experimentally that the stray inductance of the designed PCB can be reduced to the same level as the inductance inside the power devices. Experimental results verify that a prototype can achieve high-speed switching and suppress a surge voltage. A load test is demonstrated to evaluate the main circuit efficiency in a half-bridge inverter at 100kHz.
ISSN:0913-6339
2187-1094
1348-8163
2187-1108
DOI:10.1541/ieejias.140.89