Rankin-Eisenstein classes for modular forms

In this paper we make a systematic study of certain motivic cohomology classes (``Rankin-Eisenstein classes'') attached to the Rankin-Selberg convolution of two modular forms of weight $\ge 2$. The main result is the computation of the $p$-adic syntomic regulators of these classes. As a co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2020-02, Vol.142 (1), p.79
Hauptverfasser: Kings, Guido, Loeffler, David, Zerbes, Sarah Livia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we make a systematic study of certain motivic cohomology classes (``Rankin-Eisenstein classes'') attached to the Rankin-Selberg convolution of two modular forms of weight $\ge 2$. The main result is the computation of the $p$-adic syntomic regulators of these classes. As a consequence we prove many cases of the Perrin-Riou conjecture for Rankin-Selberg convolutions of cusp forms.
ISSN:0002-9327
1080-6377
DOI:10.1353/ajm.2020.0002