Rankin-Eisenstein classes for modular forms
In this paper we make a systematic study of certain motivic cohomology classes (``Rankin-Eisenstein classes'') attached to the Rankin-Selberg convolution of two modular forms of weight $\ge 2$. The main result is the computation of the $p$-adic syntomic regulators of these classes. As a co...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2020-02, Vol.142 (1), p.79 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we make a systematic study of certain motivic cohomology classes (``Rankin-Eisenstein classes'') attached to the Rankin-Selberg convolution of two modular forms of weight $\ge 2$. The main result is the computation of the $p$-adic syntomic regulators of these classes. As a consequence we prove many cases of the Perrin-Riou conjecture for Rankin-Selberg convolutions of cusp forms. |
---|---|
ISSN: | 0002-9327 1080-6377 |
DOI: | 10.1353/ajm.2020.0002 |