Tangent Lie Algebra of a Diffeomorphism Group and Application to Holonomy Theory

In this paper we introduce the notion of tangent space T o G of a (not necessary smooth) subgroup G of the diffeomorphism group D i f f ∞ ( M ) of a compact manifold M . We prove that T o G is a Lie subalgebra of the Lie algebra of smooth vector fields on M . The construction can be generalized to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2020, Vol.30 (1), p.107-123
Hauptverfasser: Hubicska, Balázs, Muzsnay, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce the notion of tangent space T o G of a (not necessary smooth) subgroup G of the diffeomorphism group D i f f ∞ ( M ) of a compact manifold M . We prove that T o G is a Lie subalgebra of the Lie algebra of smooth vector fields on M . The construction can be generalized to subgroups of any (finite- or infinite-dimensional) Lie groups. The tangent Lie algebra T o G introduced this way is a generalization of the classical Lie algebra in the smooth cases. As a working example we discuss in detail the tangent structure of the holonomy group and fibered holonomy group of Finsler manifolds.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-018-00138-3