Tangent Lie Algebra of a Diffeomorphism Group and Application to Holonomy Theory
In this paper we introduce the notion of tangent space T o G of a (not necessary smooth) subgroup G of the diffeomorphism group D i f f ∞ ( M ) of a compact manifold M . We prove that T o G is a Lie subalgebra of the Lie algebra of smooth vector fields on M . The construction can be generalized to s...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2020, Vol.30 (1), p.107-123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce the notion of tangent space
T
o
G
of a (not necessary smooth) subgroup
G
of the diffeomorphism group
D
i
f
f
∞
(
M
)
of a compact manifold
M
. We prove that
T
o
G
is a Lie subalgebra of the Lie algebra of smooth vector fields on
M
. The construction can be generalized to subgroups of any (finite- or infinite-dimensional) Lie groups. The tangent Lie algebra
T
o
G
introduced this way is a generalization of the classical Lie algebra in the smooth cases. As a working example we discuss in detail the tangent structure of the holonomy group and fibered holonomy group of Finsler manifolds. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-018-00138-3 |