Error estimation and uncertainty quantification for first time to a threshold value
Classical a posteriori error analysis for differential equations quantifies the error in a Quantity of Interest (QoI) which is represented as a bounded linear functional of the solution. In this work we consider a posteriori error estimates of a quantity of interest that cannot be represented in thi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-07 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Classical a posteriori error analysis for differential equations quantifies the error in a Quantity of Interest (QoI) which is represented as a bounded linear functional of the solution. In this work we consider a posteriori error estimates of a quantity of interest that cannot be represented in this fashion, namely the time at which a threshold is crossed for the first time. We derive two representations for such errors and use an adjoint-based a posteriori approach to estimate unknown terms that appear in our representation. The first representation is based on linearizations using Taylor's Theorem. The second representation is obtained by implementing standard root-finding techniques. We provide several examples which demonstrate the accuracy of the methods. We then embed these error estimates within a framework to provide error bounds on a cumulative distribution function when parameters of the differential equations are uncertain. |
---|---|
ISSN: | 2331-8422 |