On the arc-sine laws for Lévy processes

Let X be a Lévy process on the real line, and let Fc denote the generalized arcsine law on [0, 1] with parameter c. Then t −1 ⨍0 t P 0(X s > 0) ds → c as t → ∞ is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs >0} ds to converge in P 0 law to Fc. Moreover, P 0(Xt > 0) = c for all t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1994-03, Vol.31 (1), p.76-89
Hauptverfasser: Getoor, R. K., Sharpe, M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue 1
container_start_page 76
container_title Journal of applied probability
container_volume 31
creator Getoor, R. K.
Sharpe, M. J.
description Let X be a Lévy process on the real line, and let Fc denote the generalized arcsine law on [0, 1] with parameter c. Then t −1 ⨍0 t P 0(X s > 0) ds → c as t → ∞ is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs >0} ds to converge in P 0 law to Fc. Moreover, P 0(Xt > 0) = c for all t > 0 is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs >0} ds under P 0 to have law Fc for all t > 0. We give an elementary proof of these results, and show how to derive Spitzer's theorem for random walks in a simple way from the Lévy process version.
doi_str_mv 10.2307/3215236
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_234901343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_3215236</cupid><jstor_id>3215236</jstor_id><sourcerecordid>3215236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-9b181b18e311122f0f48d8bb1ccdcb3fa20b6c040ecc9afe4ff9a44526a4a8c83</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFbxLwQR1EN0dnfydZTiFxR60XOYbHc1IU3qTmrpT_J3-MeMNFjw4GFmLg_PO7xCnEq4VhqSG61kpHS8J0YSkyiMIVH7YgSgZJj1-1AcMVcAEqMsGYnLWRN0bzYgb0IuGxvUtObAtT6Yfn1-bIKlb41ltnwsDhzVbE-GOxYv93fPk8dwOnt4mtxOQ6MS7MKskKnsx2oppVIOHKbztCikMXNTaEcKitgAgjUmI2fRuYwQIxUTUmpSPRZnW2-f_L6y3OVVu_JNH5krjRlIjbqHLraQ8S2zty5f-nJBfpNLyH9ayIcWevJ80BEbqp2nxpT8iyNEqLTaYRV3rf_HdjXk0qLw5fzV7r77y34Dqq9yKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234901343</pqid></control><display><type>article</type><title>On the arc-sine laws for Lévy processes</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Getoor, R. K. ; Sharpe, M. J.</creator><creatorcontrib>Getoor, R. K. ; Sharpe, M. J.</creatorcontrib><description>Let X be a Lévy process on the real line, and let Fc denote the generalized arcsine law on [0, 1] with parameter c. Then t −1 ⨍0 t P 0(X s &gt; 0) ds → c as t → ∞ is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs &gt;0} ds to converge in P 0 law to Fc. Moreover, P 0(Xt &gt; 0) = c for all t &gt; 0 is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs &gt;0} ds under P 0 to have law Fc for all t &gt; 0. We give an elementary proof of these results, and show how to derive Spitzer's theorem for random walks in a simple way from the Lévy process version.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.2307/3215236</identifier><identifier>CODEN: JPRBAM</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Continuous functions ; Density ; Exact sciences and technology ; Markov processes ; Mathematical models ; Mathematical theorems ; Mathematics ; Poisson process ; Probability ; Probability and statistics ; Probability theory ; Probability theory and stochastic processes ; Random variables ; Random walk ; Random walk theory ; Research Papers ; Sciences and techniques of general use ; Semigroups ; Spectral index ; Stationary ; Studies ; Utility functions</subject><ispartof>Journal of applied probability, 1994-03, Vol.31 (1), p.76-89</ispartof><rights>Copyright © Applied Probability Trust 1994</rights><rights>Copyright 1994 Applied Probability Trust</rights><rights>1994 INIST-CNRS</rights><rights>Copyright Applied Probability Trust Mar 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-9b181b18e311122f0f48d8bb1ccdcb3fa20b6c040ecc9afe4ff9a44526a4a8c83</citedby><cites>FETCH-LOGICAL-c274t-9b181b18e311122f0f48d8bb1ccdcb3fa20b6c040ecc9afe4ff9a44526a4a8c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3215236$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3215236$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4054232$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Getoor, R. K.</creatorcontrib><creatorcontrib>Sharpe, M. J.</creatorcontrib><title>On the arc-sine laws for Lévy processes</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>Let X be a Lévy process on the real line, and let Fc denote the generalized arcsine law on [0, 1] with parameter c. Then t −1 ⨍0 t P 0(X s &gt; 0) ds → c as t → ∞ is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs &gt;0} ds to converge in P 0 law to Fc. Moreover, P 0(Xt &gt; 0) = c for all t &gt; 0 is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs &gt;0} ds under P 0 to have law Fc for all t &gt; 0. We give an elementary proof of these results, and show how to derive Spitzer's theorem for random walks in a simple way from the Lévy process version.</description><subject>Continuous functions</subject><subject>Density</subject><subject>Exact sciences and technology</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Poisson process</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory</subject><subject>Probability theory and stochastic processes</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Research Papers</subject><subject>Sciences and techniques of general use</subject><subject>Semigroups</subject><subject>Spectral index</subject><subject>Stationary</subject><subject>Studies</subject><subject>Utility functions</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFbxLwQR1EN0dnfydZTiFxR60XOYbHc1IU3qTmrpT_J3-MeMNFjw4GFmLg_PO7xCnEq4VhqSG61kpHS8J0YSkyiMIVH7YgSgZJj1-1AcMVcAEqMsGYnLWRN0bzYgb0IuGxvUtObAtT6Yfn1-bIKlb41ltnwsDhzVbE-GOxYv93fPk8dwOnt4mtxOQ6MS7MKskKnsx2oppVIOHKbztCikMXNTaEcKitgAgjUmI2fRuYwQIxUTUmpSPRZnW2-f_L6y3OVVu_JNH5krjRlIjbqHLraQ8S2zty5f-nJBfpNLyH9ayIcWevJ80BEbqp2nxpT8iyNEqLTaYRV3rf_HdjXk0qLw5fzV7r77y34Dqq9yKA</recordid><startdate>19940301</startdate><enddate>19940301</enddate><creator>Getoor, R. K.</creator><creator>Sharpe, M. J.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940301</creationdate><title>On the arc-sine laws for Lévy processes</title><author>Getoor, R. K. ; Sharpe, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-9b181b18e311122f0f48d8bb1ccdcb3fa20b6c040ecc9afe4ff9a44526a4a8c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Continuous functions</topic><topic>Density</topic><topic>Exact sciences and technology</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Poisson process</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory</topic><topic>Probability theory and stochastic processes</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Research Papers</topic><topic>Sciences and techniques of general use</topic><topic>Semigroups</topic><topic>Spectral index</topic><topic>Stationary</topic><topic>Studies</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Getoor, R. K.</creatorcontrib><creatorcontrib>Sharpe, M. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Getoor, R. K.</au><au>Sharpe, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the arc-sine laws for Lévy processes</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>1994-03-01</date><risdate>1994</risdate><volume>31</volume><issue>1</issue><spage>76</spage><epage>89</epage><pages>76-89</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><coden>JPRBAM</coden><abstract>Let X be a Lévy process on the real line, and let Fc denote the generalized arcsine law on [0, 1] with parameter c. Then t −1 ⨍0 t P 0(X s &gt; 0) ds → c as t → ∞ is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs &gt;0} ds to converge in P 0 law to Fc. Moreover, P 0(Xt &gt; 0) = c for all t &gt; 0 is a necessary and sufficient condition for t —1 ⨍0 t 1{Xs &gt;0} ds under P 0 to have law Fc for all t &gt; 0. We give an elementary proof of these results, and show how to derive Spitzer's theorem for random walks in a simple way from the Lévy process version.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/3215236</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1994-03, Vol.31 (1), p.76-89
issn 0021-9002
1475-6072
language eng
recordid cdi_proquest_journals_234901343
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Continuous functions
Density
Exact sciences and technology
Markov processes
Mathematical models
Mathematical theorems
Mathematics
Poisson process
Probability
Probability and statistics
Probability theory
Probability theory and stochastic processes
Random variables
Random walk
Random walk theory
Research Papers
Sciences and techniques of general use
Semigroups
Spectral index
Stationary
Studies
Utility functions
title On the arc-sine laws for Lévy processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20arc-sine%20laws%20for%20L%C3%A9vy%20processes&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Getoor,%20R.%20K.&rft.date=1994-03-01&rft.volume=31&rft.issue=1&rft.spage=76&rft.epage=89&rft.pages=76-89&rft.issn=0021-9002&rft.eissn=1475-6072&rft.coden=JPRBAM&rft_id=info:doi/10.2307/3215236&rft_dat=%3Cjstor_proqu%3E3215236%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234901343&rft_id=info:pmid/&rft_cupid=10_2307_3215236&rft_jstor_id=3215236&rfr_iscdi=true